
Function-based shape modeling:
mathematical framework and specialized language

Alexander Pasko1 and Valery Adzhiev2

1 Hosei University, Tokyo, Japan
pasko@k.hosei.ac.jp

2 Bournemouth University, Poole, UK
vadzhiev@bournemouth.ac.uk

Abstract. In this survey, we describe the following different aspects of
modeling multidimensional point sets (shapes) using real-valued func-
tions of several variables: algebraic system as a formal framework; rep-
resentation of shapes, operations, and relations using real-valued func-
tions, internal representation of the modeling system; specialized lan-
guage for function-based modeling, and model extension to point sets
with attributes (hypervolumes).

1 Introduction

Description of a point set (shape) by a single real-valued function of point coordinates
is a traditional problem of analytical geometry. Note that the direct problem of ana-
lytical geometry concerns the analysis of the shape for the given analytical expression.
The most well studied shapes are algebraic surfaces given as zero sets of quadratic
polynomials. The inverse problem of analytical geometry is to find an analytical de-
scription for the given shape. This problem statement can be extended to algorithmic
definitions of functions and to multidimensional point sets. Thus, the subject of this
paper is computer-aided modelling of multidimensional shapes using real-valued func-
tions of several variables.

The idea of using a single real-valued function of three variables in computer-aided
geometric modelling to define an arbitrary complex solid by a single continuous func-
tion of point coordinates and the object surface as a zero set of such a function (so-
called implicit surface) has been exploited in solid modelling and in computer graph-
ics (see Related works). There existed several research results on applying implicit
surfaces to solve such important problems of computer-aided geometric design and
animation as blending, offsetting, collision detection, and metamorphosis. However,
by early 1990-s these models were not seriously considered in the area of solid model-
ling concentrated on such models as the boundary representation (BRep) based on
parametric surface patches and Constructive Solid Geometry (CSG) based on set-
theoretic operations [1]. The other separate area with similar models and algorithms
was volume graphics using discrete scalar fields (voxel objects). A unifying represen-

tation was necessary to overcome the separation between relative models, to fully
exploit the potential of the shape representation by a single function, and to extend it
to time-dependent and other multidimensional shapes. In this survey, we describe the
mathematical framework of the unifying function representation (FRep), give exam-
ples of some non-traditional primitives and operations, and describe the modelling
system design including the internal representation and the specialized high-level
modelling language.

2 Related works

The idea of using a single real-valued function of three variables in computer-aided
geometric modelling to define an arbitrary constructive solid as 0),,(≥zyxf and

its surface as a zero set 0),,(=zyxf (so-called implicit surface) was expressed

independently by Rvachev [2, 3, 4] and Ricci [5]. Both authors have introduced ana-
lytical expressions for set-theoretic operations. Ricci proposed using C1 discontinuous
min/max operations for exact descriptions and also approximate descriptions for get-
ting smooth blending properties of the resulting surfaces. The work by Rvachev pro-
vided much more general approach called the theory of R-functions and introduced Ck
continuous functions for the exact description of set-theoretic operations. We provide
more details in the corresponding section.

The approach to modelling complex objects using a single real-valued function was
exploited in computer graphics for describing skeleton-based implicit surfaces such as
blobby models [6] and other models presented in the book [7]. The advantages of this
approach are simple point membership classification, natural blending of shapes,
conceptually simple algorithms for such problems as collision detection or metamor-
phosis. These advantages have motivated several research groups in solid modelling
and computer graphics to do systematic research and to develop special software sys-
tems supporting this modelling paradigm.

In the solid modeling area, Constructive Solid Geometry (CSG) systems are tradi-
tionally based on solid primitives bounded by implicit surfaces. For example, the
SVLIS modeling system [8] is based on CSG and allows for applying different alge-
braic operations to the defining functions of primitives. The only serious restriction is
that such operations are not allowed on the level of set-theoretic solids, which means
the single function representation is supported only on the level of primitives and their
algebraic compositions. Applications of the theory of R-functions in different areas of
solid modeling and mechanical design are considered by Shapiro [9, 10]. For example,
the interactive system SAGE [11] is oriented towards solving numerical simulation
problems on the base of the models built using R-functions and without finite-element
mesh generation. The FRep model presented in this survey also has R-functions as the
basic mathematical technique, which was used to generalize existing models and op-
erations and to develop original ones. Following the introduction of FRep, in com-
puter graphics, a BlobTree model was introduced in [12] to unify skeleton-based im-
plicit models with CSG and global deformations. The models supported by SVLIS
and BlobTree systems are subsets of FRep with the mentioned above restrictions al-

lowing for more efficient performing on some application operations such as polygo-
nization or ray-casting. The HyperFun language [13] presented in this paper fully
supports FRep and thus allows for the construction of more broader spectrum of func-
tionally defined shapes.

3 Algebraic system

The geometric concepts of the function representation (FRep) [14, 15] can be pre-
sented as an algebraic system

()WM ,,Φ

where M is a set of geometric objects, Φ is a set of geometric operations, and W is a
set of relations for the set of objects. Here, we characterize the elements of the alge-
braic system, and the next section provides details on the representation of them using
real-valued functions.

We consider geometric objects as closed subsets of n-dimensional Euclidean space

E n with the definition
f x x xn(, ,...,)1 2 0≥

where f is a real continuous function defined on E n . We call f a defining function.
The inequality is called a function representation (or F-rep) of a geometric object.
The function can be defined analytically, or with a function evaluation algorithm, or
with tabulated values and an appropriate interpolation procedure. The major require-

ment to the function is to have at least C 0 continuity. The above inequality defines a

closed n-dimensional object in E n space with the following characteristics:
f(X) > 0 - for points inside the object;
f(X) = 0 - for points on the object’s boundary;
f(X) < 0 - for points outside the object,

where X = (, ,...,)x x xn1 2 is a point in E n . In the three-dimensional case, the

boundary of such an object is usually so-called an "implicit surface". We should note
that the use of the term “implicit surface” here can be considered a historical accident.
The considered objects in 3D space are defined by explicit functions of three variables
f(x,y,z) with zero-value isosurfaces f(x,y,z)=0 as boundaries. This definition has noth-
ing in common with implicit functions of two variables except the visual form of the
equation f(x,y,z)=0 used in the latter case to implicitly define, for example, z variable
as a function of variables x and y.

Two major types of elements of the set M are simple geometric objects (primitives)
and complex geometric objects. Each geometric primitive is described by a concrete
type of a function chosen from the finite set of such types. A complex geometric ob-
ject is a result of operations on primitives. In general, geometric objects defined by the
above inequality are not regularized solids required in CSG. Applying operations to an
object can result in zero values of the defining function not only on the boundary, but
also inside the object. An object can also have a boundary with dangling portions that
are not adjacent to the interior. If it is necessary to provide Frep for objects of lower

dimension in the given space, the main idea is that the function f(X) has to take zero
values only at the points of this object and be negative everywhere else.

The set of geometric operations Φ includes unary, binary, and k-ary operations
closed on the object representation:

Φi
nM M M M: ...1 2+ + + →

where n is a number of operands of an operation. The result of an operation is also an
object from the set M that ensures the closure property of FRep. Let object G1 have

the definition f1 0()X ≥ . The term "unary operation" on the object G1 means the

operation G Gi2 1= Φ () with the definition f f2 1 0= ≥Ψ(())X , where Ψ is a

continuous real function of one variable. The binary operation on objects G1 and G2

means the operation G G Gi3 1 2= Φ (,) with the definition

f f f3 1 2 0= ≥Ψ((), ())X X , where Ψ is a continuous real function of two variables.

Relations can be considered subsets of the Cartesian product of the set M on itself.
Relations are defined on the set of objects using predicates. For example, a binary

relation is a subset of the set M2 = M × M. It can be defined by a predicate

S: M × M → I,
where I is a set of integer values corresponding to some k-valued logic.

4 FRep components

In this section, we discuss specifics of the algebraic system elements, namely, objects,
operations, and relations, and provide detailed examples for some of them.

4.1 Objects

A primitive is considered a "black box" with the defining function given by a
known function evaluation procedure. A complex object can be constructed by apply-
ing different operations to primitive objects. An FRep modeling system can support
different types of primitives from simple to relatively complex ones:

• algebraic solids expressed in terms of polynomials (sphere, superellipsoid, to-
rus, etc.);

• voxel (discrete scalar field) data with trilinear or higher order interpolation;
• skeleton-based “implicits”: blobby, soft, metaballs, and convolution objects [7,

16];
• solid noise and extruded noise [17, 18];
• two-dimensional polygons converted to FRep (see 3.1.1);
• bivariate parametric patches and trivariate parametric volumes (see 3.1.2);
• objects reconstructed from scattered surface points or from the series of cross-

sections using radial-basis functions [19].
The possibility should be given to the system developer or the user to extend this

set of primitives by providing an analytical or procedural description of a primitive.

This flexibility is one of the major advantages of an FRep based shape modeling sys-
tem.

We give here examples of two types of primitives illustrating connections between
FRep and other representations: “implicit” polygons illustrating boundary-to-function
conversion in 2D case, and “implicit” curves and surfaces defined using parametric
patches and volumes.

4.1.1 “Implicit” polygons

An arbitrary 2D polygon (convex or concave) can be represented by a real function
f(x,y) taking zero value at polygon edges. The polygon-to-function conversion prob-
lem is stated as follows. A two-dimensional simple polygon is bounded by a finite set
of segments. The segments are the edges and their extremes are the vertices of the
polygon. A polygon is simple if there is no pair of nonadjacent edges sharing a point,
and convex if its interior is a convex set. The polygon-to-function conversion algo-
rithm should satisfy the following requirements:
• It should provide an exact polygon boundary description as the zero set of a real-

valued function;
• No points with zero function value should exist inside or outside of the polygon;
• It should allow for the processing of any arbitrary simple polygon without any

additional information.
Rvachev [3] proposed representing a concave polygon with a set-theoretic formula
where each of the supporting half-planes appears exactly once and no additional half-
plane is used. It is illustrated in Fig. 1. A counter-clockwise ordered sequence of co-
ordinates of polygon vertices A1(x1, y1), A2(x2, y2),..., An(xn, yn) serves as the input.
Also, coordinates are assigned to a point An+1(xn+1,yn+1) coincident with A1(x1,y1). It is
obvious that the equation

f x y y y x x x y x yi i i i i i i ii≡ − − + − − + =+ + + +() ()1 1 1 1 0

defines a line passing through the points Ai(xi,yi) and Ai+1(xi+1, yi+1); fi is a function

positive in an open region Ω i
+ and negative in an open region Ωi

− located respec-

tively to the left and to the right of the line. When the region Ω+ is bounded by a
convex polygon, it can be given by the logical formula

Ω Ω Ω Ω+ + + += 1 2� � �... .n

If Ω+ is an external region of a convex polygon, then

Ω Ω Ω Ω+ + + += 1 2� � �... .n
Let us consider the concave polygon shown in Fig. 1a and a tree representing its

monotone formula in Fig. 1b. Actually, the approach to the monotone formula con-
struction is similar to the convex decomposition discussed in the previous section.
Note that in the tree in Fig. 1b, the convex polygon A1A2 A10A11 is a root (level 0), the
polygon A2 A6A10 is level 1, and the polygons A3A4A5 and A7A8A9 are level 2. The

internal region Ω + of the initial polygon is defined by the following formula:

a b

Fig. 1. Polygon-to-function conversion: a) concave polygon; b) tree structure representing the
monotone set-theoretic formula.

(() ())Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω+ + + + + + + + + + + += 1 2 3 4 5 6 7 8 9 10 11� � � � � � � � � �

This formula is especially nice in that each region is present in it only once. It is worth
to emphasize that the set-theoretic operation applied to a region is determined by the

tree level to which this region belongs. Because Ω Ω2 5
+ +≡ and Ω Ω6 9

+ +≡ (see

Fig. 1a), it can be simplified as follows:

(() ())Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω+ + + + + + + + + += 1 2 3 4 6 7 8 10 11� � � � � � � � .

The final formula for the defining function is obtained by replacing the symbols Oi
+

by fi , symbol � by ∧ and symbol � by ∨ in the monotone formula. For our
example (Fig. 1a), the defining function for the polygon is

,))()((11108764321 fffffffffF ∧∧∧∨∨∧∨∧=

where symbols ∧ and ∨ correspond to R-functions providing exact functional
description for the results of intersection and union (see details in 4.2.1).

In practice, the monotone formula construction results in a tree structure (see
Fig. 1b). To evaluate the single defining function for the entire polygon at a given
point, the algorithm traces the tree from the leaves to the root, evaluates the defining
functions of half-planes and applies the corresponding R-functions to them.

The conversion procedure is illustrated in Fig. 2 with an input concave polygon
(Fig. 2a) and the defining function surface (Fig. 2b), where only positive values of the
function (i.e., the points inside the polygon) are shown and the negative values outside
the polygon are set to zero.

Once the defining function for the given polygon is obtained, it can be used as
other 2D primitives, for example, for modeling 3D objects by sweeping. Note that the
similar conversion procedure for an arbitrary 3D polyhedron is still an open research
problem.

a b

Fig. 2. Example of an “implicit” polygon: a) initial concave polygon; b) depth data inside the
polygon generated by the polygon-to-function conversion procedure.

Fig. 3. Parametric function (B-spline) in the extended 3D space and the corresponding 2D solid
in the 2D space.

4.1.2 Parametric patches and volumes

Here, we discuss modeling of “implicit” 2D curves and 3D surfaces and solids using
bivariate and trivariate parametric splines [20, 21]. Let us consider modeling of a 2D
solid as it is shown in Fig. 3. The surface S is a B-spline (parametric) function. It is
defined in the (x, y, ξ) space, where ξ = f(x, y). The 2D solid belongs to the (x, y)
plane and is bounded by the zero-contour line of the surface with its inside part being
the projection of the positive part of the 3D surface onto the plane. The surface is
defined parametrically, then, by moving its control points vertically along the ξ axis,
one can transform the corresponding 2D solid.

A similar approach can be applied to define and to deform 3D solids using trivari-
ate parametric splines. A trivariate spline is defined with 3-dimensional control points,
i.e. the x, y and z coordinates. We use the FRep definition, where a solid is defined by
its defining function f with the inequality f(x, y, z) ≥ 0, and its boundary is defined by
the equality f(x, y, z) = 0. In the parameter space defined by {(x,y,z) : 0 ≤ (x,y,z) ≤ 1},
we assume that the x,y and z coordinates of the surface S(u,v,w) can be expressed as a

regular grid, i.e.
n

kz
ijkPand

m

jy
ijkP

l

ix
ijkP === , , where P is a control point of the

spline, and l,m,n are the number of control points on each axis. We add one more
dimension to those points, the ξ coordinate, corresponding to the function value. Then,
we define a 3D solid as f(x,y,z) = Sξ(u,v,w). Hence, we can modify the 3D solid by
changing the ξ coordinate of control points of the trivariate spline. Bezier splines were
used in [20] and B-splines in [21].

a b

Fig. 4. Functional clipping for trivariate splines: (a) the unit cube, the desired solid inside it,
and “ghost” solids outside; (b) the same solid after functional clipping

One undesirable property of Bezier splines and B-splines is that there is no control
over the behaviour of the volume outside the unit cube domain. In order to overcome
this, the functional clipping was introduced. Fig. 4a shows a solid based on a trivariate
B-spline, which is bounded by the unit cube. The aim was to create a 3D solid inside
that domain. As it can be observed, the behaviour of the parametric function outside
the domain contradicts the requirement that there should be only negative values of a
defining function for points outside the defined object. This results in undesirable
(“ghost”) solids. Let S(u,v,w) be a function defining a trivariate spline where S(u,v,w)
= Sξ(u,v,w). Consider the intersection between the unit cube and the 3D solid defined
by the function:

),,(),,(),,(wvuFwvuSwvuS sclip α∧=

where Fs(u,v,w) = Fb(u) & Fb(v) & Fb(w) is a defining function of the unit cube
with Fb defining the unit strip by each variable:

tttFb)1()(−= ,

and α∧ is the symbol of the intersection operation defined by an R-function (see

details in 3.2.1).
The result of this procedure is illustrated in Fig. 4b. The defining function is nega-

tive outside the domain (no “ghosts”) and the desirable 3D solid is unchanged. The
procedures defining spline based objects can encapsulate the functional clipping. This
allows the user to consider such an object as a standard FRep primitive and to apply to
it any operation provided by a modeling system.

4.2 Operations

There is a rich set of operations closed on FRep, i.e., resulting in a continuous real-
valued function [15]. Unary operations can be classified as space mappings – trans-
formations of point coordinates (affine transformations, standard deformations such as
twisting, tapering, or bending, and feature-based nonlinear deformations), functions
mappings – transformations of function values at given points (offsetting, solid sweep-
ing [22], and projection [23]). Binary operations include set-theoretic operations (un-
ion, intersection, difference) and Cartesian product defined using R-functions (see
4.2.1), Minkowski operations [24], metamorphosis and others. Bounded blending
operations (see 4.2.2) take three objects as arguments, thus illustrating k-ary opera-
tions in the FRep framework. Similar to primitives, the user of an FRep based
modeling system should be able to introduce any desirable operation by its analytical
or procedural description and thus extend the list of operations.

As the combination of continuous shape models with the discrete logic based mod-
eling is one of the key points in FRep, we would like to pay special attention to R-
functions enabling this combination and to the bounded blending operation as one of
applications of R-functions.

4.2.1 R-functions and set-theoretic operations

Following [2-4], we provide here informal description and analytical definitions of
several systems of R-functions, and discuss application of them for describing com-
plex geometric objects composed using set-theoretic operations.

Informal description of R-functions

There are such functions whose some "quality" is completely defined by "qualities"
of their arguments. The sign of the function is a typical example of such a “quality”.
Given the following functions:

)0(),,,(3213211 >⋅⋅⋅= vxxxvxxxu

21
2
2

2
1212 xxxxxxu ⋅++++= ,

we can observe that the signs of these functions are completely defined by signs of
their arguments and do not depend on arguments values. Note, that "qualities" of ar-
guments and the corresponding "quality" of a function can be different. But anyway,
appropriate dependence remains. Such functions are called "R-functions".

If mentioned "qualities" are enumerated in some way, then there is correspondence
between any set of "qualities" and a set of their numbers. So, by introducing some R-
function, we simultaneously define the rule which gives some "quality" of R-function
for any such set and therefore the number of this "quality". This means that there is
some logic function matching the R-function with the same number of arguments.
Therefore, there is a deep coupling between R-functions and the logic functions that
allow for adaptation of the methods inherent in discrete mathematics to classical con-
tinuous analysis.

The subject of a special interest is real continuous R-functions and also R-functions
with Cm continuity. R-functions belonging to certain defining systems and being built
with help of special techniques can have the particular differential and metric proper-
ties which can be useful in some applications.

Defining functions of geometric objects

The property of R-functions to inherit and maintain such a quality of their argu-
ments as signs is used in description of complex geometric objects being created from
more simple objects using operations defined by R-functions. The geometric interpre-
tation of logic functions is well-known and is widely used in classification of space
points in relative to geometric objects (which are considered as points sets). Euler
Circles (or Venn Diagrams) can serve as a visual illustration of it.

Suppose we have a set of geometric objects and each of them is given using the

inequality of the form ,0 ≥if where)x,...,x,(x k21ii ff = is a continuous real-

valued function taking positive values at the points inside the object Gi, and zero val-
ues at the boundary points of Gi. Let us introduce 3-valued predicates associated with
each of fi and accordingly which each of geometric objects Gi :

>
=
<

=
0,2

0,1

0,0

)(3

i

i

i

i

f

f

f

fS

To define a new more complex geometric object G as a result of some set-theoretic
operations on initial geometric objects {Gi}, let us introduce the following predicate
equation built on the base of 3-valued logic:

 ,)](S),...,(S),([S 32313 AfffF m =

where F is a certain 3-valued logic function, and A = { 0, 1, 2 }. It is required to de-
fine the continuous function fm+1 (f1 , f2 , ..., fm), which will define the resulting object
G.

This function is such that

)](S),...,(S),([S)),...,,((323132113 mmm fffFffffS =+

The process of constructing the defining function f consist of the following steps:
- representing F as a composition (superposition) of basic 3-valued logic functions

(disjunction, conjunction, inversion or complement, and so on);
- performing the formal replacement of logic functions symbols by symbols of the

corresponding R-functions;

- performing the formal replacement of ‘)(S3 if ’ symbols by ' if '.

After the final step, the defining function fm+1 is specified.
The proper choice of F from a set of 3-valued logic functions guarantees that the

predicate equations F = 0, F = 1, F = 2 are equivalent to inequalities f < 0, f = 0, f >
0 and a geometric object with f = 0 includes only boundary points and does not in-
clude internal points.

Note, that R-function can describe both "algebraic" (that is traditional) geometric
objects and "semi-algebraic" ones. It is important that a semi-algebraic object is repre-
sented with help of R-functions in the form of a single inequality. Usually such an
object (e.g., a rectangle) is represented as a system of equations and inequalities. In
principle, the geometric object description is ambiguous as there can be an infinite set
of defining functions for the same object. This lets us create defining functions with
certain additional properties. In particular, even for semi-algebraic objects, smooth
defining functions can be constructed: in particular, such sharp edged object as rec-
tangle can be represented as a result of intersection of a smooth surface with a plane).
This is important for computer-based applications (in particular, for visualization).

An object resulting from set-theoretic operations can be described by the following
defining functions:

213 fff α∨= for the union;

213 fff α∧= for the intersection;

213 \ fff α= for the subtraction,

where f1 and f2 are defining functions of initial objects and ααα ,\,∧∨ are signs of

R-functions. Of all the possible descriptions of the R-functions, we use the following
analytical formulae:

)2(
1

1

)2(
1

1

21
2

2
2

12121

21
2

2
2

12121

ffffffff

ffffffff

α
α

α
α

α

α

−+−+
+

=∧

−+++
+

=∨

where α α= (,)f f1 2 is an arbitrary continuous function satisfying the following
conditions:

),(),(),(),(

,1),(1

21211221

21

ffffffff

ff

−=−==
<<−

αααα
α

The expression for the subtraction operation is

)(\ 2121 ffff −∧= αα

Note that with this definition of the subtraction, the resulting object includes its
boundary.

If α=1, the above functions take the form:

),max(

),min(

21211

21211

ffff

ffff

=∨
=∧

These R-functions are very convenient for calculations but have C1 discontinuity
when f f1 2= . If α=0, the above general formulation takes the most useful in practice
form:

2
2

2
121201

2
2

2
121201

ffffff

ffffff

+−+=∧

+++=∨

These functions have C1 discontinuity only in points where both arguments are

equal to zero. If C m continuity is to be provided, one may use another set of R-
functions:

22
2

2
1

2
2

2
12121

22
2

2
1

2
2

2
12121

))((

))((
m

m

m

m

ffffffff

ffffffff

++−+=∧

++++=∨

(a)

(b)

Fig. 5. Contour maps and surfaces of defining functions for a 2D square with a square hole

(bold lines): (a) R-functions 1∧ ; (b) R-functions 0∧ .

Fig. 5 illustrates the properties of R-functions. The contour maps and surfaces of
the function f3(x,y) are shown for different values of parameter α. Here,

)(213 fff −∧= α , where f1 and f2 define bigger and smaller square areas respec-

tively. The contour lines f3(x,y)=0 drawn in bold are boundaries of the defined 2D

square with a square hole. Note the smooth non-zero contours for R-functions 0∧ in

Fig. 5b. This property is used in the formulation of several other operations, for exam-
ple, blending versions of set-theoretic operations.

4.2.2 Bounded blending operations

A blending operation in shape modeling generates smooth transition between two

surfaces. Such operations are usually used in computer-aided design for modeling
fillets and chamfers. Blending versions of set-theoretic operations (intersection, union,
and difference) on solids approximate exact results of these operations by rounding
sharp edges and vertices.

The R-functions with α=0 have zero contour lines with sharp vertices (bold line in
Fig. 5b). Other contour lines are smooth in the entire domain. This property brings the
idea that some displacement of the exact R-function can result in the blending effect.
The following definition of a blending set-theoretic operation was proposed in [25]:

),,(),(),(212121 ffdispffRffF bb +=

where),(21 ffR is an R-function corresponding to the type of the operation, the

arguments of the operation)(1 Xf and)(2 Xf are defining functions of two initial

solids, and),(21 ffdisp is a Gaussian-type displacement function. The following

expression for the displacement function was used:

),(21 ffdispb = ,

1
2

2

2

2

1

1

0

+

+

a

f

a

f

a

where a0, a1, an a2 are parameters controlling the shape of the blend. The proposed
definition is suitable for blending union, intersection, and difference and allows for
generating added and subtracted material, as well as symmetric and asymmetric blends.

Blending to the edge is one of the challenging operations. Fig. 6 shows blending
union of a sphere (top object) to the edge produced by intersection of two other
spheres (bottom object). In the case when the bottom object is constructed using min
function (Fig. 6b), the edge is present on the blend surface because of C1 discontinuity
of the min function on a plane passing through the initial edge. In the case when the

bottom object is constructed using the R-function 0∧ , the blend surface is smooth

(Fig. 6c).

a b c

Fig. 6. Blending to the edge: a) sphere (top object) is blended to the intersection of two other
spheres (bottom object); b) min function is used for the bottom object construction; c) R-
function is used for the bottom object construction.

a b c

Fig. 7. Shape and position of 3D blend are controlled by the bounding ellipsoid

However, the above displacement function does not get zero value anywhere in the
space. This is the reason of the main disadvantage of this definition - the blend has
global character and cannot be localized using its parameters. In [26], a different dis-
placement function was proposed, which allows for localization of the blend using an
additional bounding solid:

≥

<
+
−

=
1,0

1,
1

)1(
)(2

32

r

r
r

r
rdispbb

where r is a generalized distance constructed using defining functions of two initial

solids (1f and 2f) and a bounding solid (function 3f):

,

0,1

0,

2

22
2

2
1

2
1

2

=

>
+=

r

r
rr

r

r where

,),(
2

2

2

2

1

1
21

2
1

+

=

a

f

a

f
ffr

and ,

0,0

0,
)(

3

3

2

3

3

3
2

2

≤

>

=

f

f
a

f
fr

with numerical parameters 1a and 2a controlling the blend symmetry, and 3a allow-

ing the user to interactively control the influence of the function 3f on the overall

shape of the blend.
The shape and position of the bounded blend are controlled by its parameters and

by the position and shape of the bounding solid. Control of blend shape and position is
illustrated by Fig. 7. The pure union of two polyhedral shapes (Fig 7a) is changed to
the bounded blending union using the bounding ellipsoid (transparent shape). The
resulting blend is located strictly inside the bounding ellipsoid (Fig. 7b), which pro-
duces an unusual blending shape localized at the top part of the initial union of poly-
hedrons (Fig. 7c).

Other unusual applications of bounded blending illustrated in [26] are multiple
blending with a bounding solid consisting of several disjoint components, partial edge
blending with added and subtracted material, and blend on blend. Note that the
bounded blending operation requires three objects as an argument and thus it formally
belongs to the class of 3-ary operations of FRep.

4.3 Relations

Let us give here examples of binary relations for point membership and intersection
relations between two objects. Similarly to the primitives and operations, the user
should be given a possibility to extend the set of relations by providing symbolic or
procedural definitions of their predicates.

Point membership relation

Let iG1 be the interior of the object G1 and bG1 be the boundary of G1. The point
membership relation is described by the 3-valued predicate:

∈
∈
∉

=

11

11

11

13

for 0>)(if ,2

for 0=)(if ,1

for 0<)(if ,0

),(

iGPf

bGPf

GPf

GPS

X

X

X

Note that the system of set-theoretic operations based on R-functions corresponds
to the operations of 3-valued logic over predicates S3 but not to the Boolean logic.

Intersection relation

The intersection (or collision) relation indicates if two objects have common points
and is defined by the bi-valued predicate

∅≠∩
∅=∩

=
21

21
21 if ,1

 if ,0
),(

GG

GG
GGSc

The function)()()(213 XXX fff α∧= defining the result of the intersection

can be used to evaluate Sc . It can be stated that Sc = 0 if f3 0()X < for any point

of E n [4]. This property can be used for the numerical collision detection based on

the maximum search for)(3 Xf .

5 Internal representation

In this section we provide an outline of the formal specification of the FRep based
geometric modeling system. We use the constructive technique based on Vienna De-
velopment Method (VDM) [27]. Of course, we can give here only a simplified frag-
ment of the whole VDM specification, and many details are omitted. However, we
believe that even in such an incomplete form the specification fragment does provide a
solid mathematical framework for building high level representative view of the sys-
tem which can be useful for understanding internal data structures and computing
processes.

We use a limited subset of VDM notation which is close to the one used in [28] for
specifying GKS. This subset has a traditional though somewhat simplified and mne-
monically informative notation. First of all, the specification defines principal abstract
data types and operations over them.

Let us introduce the concept of FRep_Machine which embodies state-based model
of our geometric modeling system. The state of that underlying abstract machine is
defined in the form of the Abstract Syntax (see Fig. 8). Line 1 introduces
FRep_Machine definition in terms of four components that are briefly described be-
low.

Geometric environment Geom_Env (line 2) is defined as a finite map and states the
meaning of all the geometric entities present in the system based on their names
Geom_Ident. Geometric entities (lines 7 – 11) are defined as composite objects having
a number of fields taking values from specified domains. The names attached to these
fields (‘s_*_*’) serve as selectors (accessor functions), each from the domain of the
composite object to the domain of the relevant field to make all the constituent fields
accessible.

For instance, each object with generic type Gob (line 7) contains the fields stating
its names with type ‘Gob_Ident’, dimensionality of integer type N, a list of formal
parameters ‘Par*’, a list of formal coordinate variables ‘X*’, and its representation in
terms of geometric tree ‘Gob_Tree’. The geometric tree is itself specified as a com-
posite object (line 11) recursively defining a k-ary constructive tree structure. Note

that primitive geometric objects Pob (line 8) are represented by a structure of
‘FRep_Pob’ type which can embody a functional expression, procedure, etc. A special
object is a point in the modeling space ‘Point’ (line 6) being characterized by its di-
mensionality and a list of its coordinates. Relations (line 10) are represented by a
structure embodying predicate.

As to operations (line 9) , they are represented by a structure with type
‘FRep_Transf’ embodying a certain transformation of FRep. We can deal with k-ary
operations (lines 12-13) whose generic types can be unary (function mappings
‘Op_F_Map’, space mapping ‘Op_Space_Map’, extended space mapping
‘Op_Extended_Space_map’, projection ‘Op_Projection ’, etc.), binary set-theoretic
(‘Op_ST_U’ and ‘OP_ST_Bi’), and ternary bounded blending ‘OP_Blend_Ternary’.

Geometric store ‘Geom_Store’ (line 3) is a finite map that provides lists of actual
parameters for all the geometric entities. Numerical store ‘Num_Store’ allows for
binding of variable identifiers with their values.

Operations on introduced objects are represented as transition functions of
FRep_Machine. Let us present here only one yet the most important operation, namely
the one evaluating a defining function for a certain instance of a complex geometric
object gob at the given point of the modeling space. The definition of such a function
‘f_gob_eval’ is shown in Fig. 9. It is recursive and makes use a number of standard
key words and operators such as ‘let x = … in …’ introducing local variables in func-
tion definitions.

There are a number of other functions in that definition. Auxiliary functions
‘Value_list’ and ‘Value_par’ (lines 5 and 7) provide binding of parameters with their
actual values through access to the numerical store and usage of standard functions
dealing with lists. The principal function ‘f_gob_eval’ is eventually reduced to
‘f_gob_tree_eval’ (lines 9-56) which deals with the tree structure ‘gob_tree’ corre-
sponding to that instance gob (see line 4). Let us give some comments on that function.

Firstly, the signature of each input and output variables defining the function type
(line 9) is defined. The symbol ‘ ∆ ’ (line 10) denotes syntactic equivalence. Line 11
contains precondition on input variables; note that we do not define here invariants
such as ‘inv_gob_tree’ proving “well-formedness” condition. Then, using selector
‘s_tree_node’ (see Fig. 8) we get an access to the geometric entity ‘geom_ident_node’
in the tree node (line 12) and form a list of the point coordinates (line 13). Predicates
‘is_*’ serve for recognizing the type of ‘geom_ident_node’.

If ‘geom_ident_node’ is recognized as having ‘Gob’ type (line 14), we get all the
necessary data about it from the geometric environment (line 15) and the function
‘f_gob_eval’ is recursively applied. If ‘Pob’ type is recognized (line 17), we get all the
information about this primitive from the geometric environment and the geometric
store (lines 18-19) with its subsequent substitution into the selector function
‘s_pob_rep’ (line 20).

Fig. 10 shows how the function 'f_gob_eval' can be used for defining point mem-
bership relation.

1. FRep_Machine = Geom_Env × Geom_Store × Point × Num_Store

2. Geom_Env = Geom_Ident → m Geom_Entity

3. Geom_Store = Geom_Ident → m Arg*

4. Num_Store = Ident → m Val
5. Geom_Entity = Gob | Pob | Op | Rel

6. Point:: s_point_dim: N
 s_point_coord: Arg*

7. Gob:: s_gob_id: Gob_Ident
 s_gob_dim: N
 s_gob_par: Par*
 s_gob_coord: X*
 s_gob_rep: Gob_Tree

8. Pob:: s_pob_id: Pob_Ident
 s_pob_dim: N
 s_pob_par: Par*
 s_pob_coord: X*
 s_pob_rep: FRep_Pob

9. Op:: s_op_id: Op_Ident
 s_op_dim: N
 s_op_par: Par*
 s_op_coord: X*
 s_op_rep: FRep_Transf

10. Rel:: s_rel_id: Rel_Ident
 s_rel_dim: N
 s_rel_par: Par*
 s_rel_rep: FRep_Pred

11. Gob_Tree:: s_tree_arity: N

s_tree_node: Geom_Ident
 s_tree_leaves: (N × Gob_Tree | nil)*

12. Op = Op_Unary | OP_ST_Bi | OP_ Blend_Ternary
13. Op_Unary =Op_ST_U || Op_F_Map | Op_Space_Map | Op_Extended_Space_map |

Op_Projection | …

14. Geom_Ident = Gob_Ident | Pob_Ident | Op_Ident | Rel_Ident
15. Par = Ident
16. Arg = Val | Ident
17. Val = Real | Undef

Fig. 8. VDM specification: State of the FRep_Machine (fragment of an abstract syntax)

1. type f_gob_eval: Gob × Point × FRep_Machine → Val
2. f_gob_eval (gob, point, frep_machine) ∆

3. pre is_Gob (gob) � (s_point_dim (point) = s_gob_dim (gob));

4. let gob_tree = s_gob_rep (gob) in

 f_gob_tree_eval (gob_tree, point, frep_machine);

5. type Value_list: Arg* × Num_Store → Val*
6. Value_list (arg_list, num_store) ∆

 if arg_list = nil then nil
else conc (Value_par (hd (arg_list, num_store)), Value_list (tl (arg_list), num_store));

7. type Value_par: Arg × Num_Store → Val
8. Value_par (arg, num_store) ∆

 is_Ident (arg) → num_store(arg);
 is_Val (arg) → arg;

9. type f_gob_tree_eval: Gob_Tree × Point × FRep_Machine → Val
10. f_gob_tree_eval (gob_tree, point, frep_machine) ∆

11. pre inv_gob_tree (gob_tree, frep_machine);
12. let geom_ident_node = s_tree_node (gob_tree) and
13. coord_value_list = Value_list (s_point_coord (point)) in

14. is_Gob_Ident (geom_ident_node) →
15. let gob_node = geom_env (geom_ident_node) in
16. f_gob_eval (gob_node, point, frep_machine);

17. is_Pob_Ident (geom_ident_node) →
18. let pob = geom_env (geom_ident_node) and
19. par_value_list = Value_list (geom_store (geom_ident_node)) in
20. let frep_pob = s_pob_rep (par_value_list, coord_value_list);

21. is_Op_Unary_Ident (geom_ident_node) →
22. let op_un = geom_env (geom_ident_node) and
23 par_value_list = Value_list (geom_store (geom_ident_node)) and
24. let gob_tree_left = s_tree_leaves (gob_tree, 1) in

25. is_Op_F_Map_Ident (geom_ident_node) →
26. let frep_transf = s_op_rep (op_un) in
27. frep_transf (par_value_list, coord_value_list,
28. f_gob_tree_eval (gob_tree_left, point, frep_machine));

29. is_Op_Space_Map_Ident (geom_ident_node) →
30. let frep_transf = s_op_rep (op_un) in
31. let inverse_coord_list =

32. Value_list (frep_transf (par_value_list, coord_value_list)) in
33. let inverse_point =
34. mk_point (s_point_dim (point), inverse_coord_list) in
35. f_gob_tree_eval (gob_tree_left, inverse_ point, frep_machine);

36. is_Op_Extended_Space_Map_Ident (geom_ident_node) →
 <…>
37. is_Op_ST_Bi_Ident (geom_ident_node) →
38. let op_st_bi = geom_env (geom_ident_node) and
39. par_value_list = Value_list (geom_store (geom_ident_node) in
40. let gob_tree_left = s_tree_leaves (gob_tree, 1) and
41. gob_tree_right = s_tree_leaves (gob_tree, 2) in
42. let frep_transf = s_op_rep (op_st_bi) in
43. frep_transf (par_value_list, coord_value_list,
44. f_gob_tree_eval (gob_tree_left, point, frep_machine),
45. f_gob_tree_eval (gob_tree_right, point, frep_machine));

46. is_Op_Blend_Ternary_Ident (geom_ident_node) →
47. let op_bl_tern = geom_env (geom_ident_node) and
48. par_value_list = Value_list (geom_store (geom_ident_node) in
49. let gob_tree_1 = s_tree_leaves (gob_tree, 1) and
50. gob_tree_2 = s_tree_leaves (gob_tree, 2) and
51. gob_tree_3 = s_tree_leaves (gob_tree, 3) in
52. let frep_transf = s_op_rep (op_bl_ter) in
53. frep_transf (par_value_list, coord_value_list,
54. f_gob_tree_eval (gob_tree_1, point, frep_machine),
55. f_gob_tree_eval (gob_tree_2, point, frep_machine)
56. f_gob_tree_eval (gob_tree_3, point, frep_machine));

Fig. 9. VDM specification: Evalation of defining function for geometric object

type pred_point_membership: Gob × Point × FRep_Machine → Int
pred_point_membership (gob, point, frep_machine) ∆

 let f_value = f_gob_eval (gob, point, frep_machine) in
 is_equal_zero (f_value)

type is_equal_zero: Val → Int
 <…>

Fig. 10. VDM specification: Point membership relation

Then, we check if ‘geom_ident_node’ is a unary operation (line 21); if so, we get
its data from the geometric environment and form the list of its actual parameters
(lines 22-23). We get an access to its only subtree ‘gob_tree_left’ and can act depend-
ing on the type of that operation. In case this is a “Function mapping” operation (line
25) we just get the corresponding representation ‘frep_transf‘ of this operation (ine
26) and evaluate it with proper parameters (line 27) using recursively applying
‘f_gob_tree_eval’ function (line 28).

If this is a “Space mapping” operation (line 29), one should get an inverse list of
coordinates (line 31) with subsequent recursive evaluation of ‘f_gob_tree_eval’ at the
point ‘inverse_point’ formed with help of “make” function ‘mk_point’ (lines 33-35).
As to an operation of the “Extended space mapping” type combining a function map-
ping and a space mapping, it can be implemented by combining two previously de-
scribed ones with two subsequent (down and up) passes of the tree (omitted in the Fig.
9).

Finally, let us consider the case when ‘geom_ident_node’ is a ternary bounded
blending operation (line 46-56). The evaluation involves forming the lists of actual
parameters and a recursive application of ‘f_gob_tree_eval’ for all three subtrees. A
similar procedure is applied in the case of a binary set-theoretic operation (lines 37-
45).

Fig. 11. Tree structure for a metamorphosis operation between a constructive solid and a
blobby object defined using algebraic sums of individual blobs.

Fig. 12. Stages of metamorphosis between a constructive solid and a blobby object

Fig. 11 shows an example of the internal tree structure for a 4D (time-dependent)
object, defined as a binary metamorphosis operation between a constructive solid (left
subtree) and a blobby object (right subtree with only algebraic sums in the nodes).
Several stages of the object transformation are shown in Fig. 12.

6 Modeling heterogeneous objects

Modeling heterogeneous objects is becoming an important research topic. Heteroge-
neous objects are considered in such different areas as modeling of objects with mul-
tiple materials and varying material distribution in CAD/CAM and rapid prototyping,
representing results of physical simulations, geological and medical modeling, volume
modeling and rendering. We consider real or abstract heterogeneous objects that have
internal structure with non-uniform distribution of material and other attributes of an
arbitrary nature (photometric, physical, statistical, etc.), and elements of different
dimension. It means these objects are heterogeneous with respect to their structure and
dimensionality.

Multidimensional point sets with a fixed dimensionality and with multiple attributes
can be quite effectively dealt with using a constructive hypervolume model based on
real-valued vector-functions (see 6.1). The requirement of dimensional heterogeneity
naturally brings the idea of adding a kind of cellular representation to the model while
using FRep. Moreover, different applications such as CAD or finite-element analysis
require an explicit representation of mixed-dimensional objects along with the func-
tional one. These are the main motivations for introduction of a new hybrid cellular-
functional model (see 6.2).

6.1 Constructive hypervolume model

A hypervolume object can be defined as:

))(),...,(),((:),...,,(11 XSXSXFAAGo kk=

where Χ = (x1, …, xn) is a point in n-dimensional Euclidian space Εn, F: Χ ¤ ℜ is a
real-valued defining function of point coordinates representing the point set
G, Si: Χ ¤ ℜ is a real-valued scalar function representing an attribute Ai that is not

necessarily continuous. The point set G and the attribute functions Si are defined by
real-valued functions using FRep. The function F corresponding to an FRep object is
at least C0 continuous and defined in the Euclidean space En. As it was discussed ear-
lier, the function F is evaluated by a procedure traversing a tree structure, where
primitives are placed at the leaves, and operations at the nodes. Because the function
F is built using a constructive method, the proposed model was called a constructive
hypervolume model. Similarly, attribute functions Si are evaluated by traversing the
corresponding tree structures. Therefore, we can state that the internal representation
of a constructive hypervolume includes a constructive geometric tree and constructive
attribute trees.

The proposed model was used in [29] to extend the well-known concept of solid
texturing in two directions: constructive modelling of space partitions for texturing
and modelling of multidimensional textured objects. Some operations on attributes
such as color blending were also discussed. Other applications of constructive hyper-
volumes include

• Rapid prototyping and fabrication of objects with multiple materials and vary-
ing material distribution;

• Physics based simulations for the analysis of physical field distributions over
the given geometric areas;

• Analysis of geological structures;
• Medical examination and surgery simulation using data from computer tomo-

graphy and other scanning devices;
• Modeling and visualization of amorphous and gaseous phenomena.

6.2 Implicit complexes

Let us first consider a 2D space and k-dimensional cells in it:
k=2: 2D solid or planar area;
k=1: curves and their segments;
k=0: points.
It is clear that 2D solids can be defined as f(x,y) ≥ 0. Rvachev [4] discussed the

construction of such a definition for lower dimensional objects. The main idea is that
the function f(x,y) has to be zero only at the points of this object and negative every-
where else. For example, if one wants to describe a straight line segment on a 2D
plane, an equation of a straight line can be used: w(x,y)=ax+by+c. The inequality
w ≥ 0 defines a halfplane. Then, -w2 ≥ 0 defines the line itself, where in fact the func-
tion -w2 is never positive and only becomes zero on the line. The line can be trimmed
using some 2D solid to produce one or several segments. The simplest way to define a

segment is -w2
0∧ g ≥ 0, where g(x,y) ≥ 0 is a definition of a 2D solid disk.

In 3D space, we can also define points, curve segments, and surface patches as fol-
lows:

• “implicit” definition of a surface patch requires an “implicit” surface and a
trimming 3D solid

• a curve can be defined as an intersection of two surfaces, each defined as
-f2 ≥ 0

• a point can be defined as the intersection of three surfaces, a curve and a sur-
face, or directly as d(x,y,z), where d is a negative distance to the given point.

Rvachev et al. [30] showed that such a function representation of lower dimen-
sional cells was quite useful in solving interpolation and boundary value problems.

In [31], a hybrid cellular-functional model of heterogeneous objects was introduced.
It combines a cellular representation and a constructive representation using real-
valued functions. A notion of an implicit complex was introduced in [31]. Such a com-
plex has the following features:

• it is defined as a union of properly joined cellular spaces (which we call do-
mains to distinguish them from general cellular spaces);

• subspaces that are shared by two or more domains are represented by explicitly
defined cellular subcomplexes; accordingly, some domains can be represented
by explicit cellular complexes; for other domains, it is enough to have only a
few explicit cells to form a base for the intersection; as to their complete repre-
sentation, it is defined functionally;

• as all these cellular spaces are properly joined, they ultimately form a complex,
which we call an implicit one.

Fig. 13. Example of an implicit complex in E3.

An example of an implicit complex is given in Fig. 13. Here, using domains with
different dimensionalities is necessary. The object consists of a cylinder with a longi-
tudinal hole and a bent surface patch with a hole, which is attached to the cylinder’s
surface. Here, we use two FRep domains. The first one, D1 is represented as a 3D
cylinder defined functionally as F1(x,y,z)≥0. The explicit part of this domain consists
of cells corresponding to two “attaching points” {e0

1, e0
2} and one “attaching” line

segment e1
1. The second FRep domain D2 presents a more interesting case. The point

set T2
2 has its preimage (T2

2)’, which is defined on the plane (u,v) by a function
F2(u,v)≥0. Then, we must define embedding map h: E2 -> E3, which gives us ho-

meomorphism taking (T2
2)’ to T2

2. The second domain has the same explicit part as the
first one.

The hybrid cellular-functional model allows for independent but unifying represen-
tation of geometry and attributes of heterogeneous objects, and makes it possible to
represent dimensionally non-homogeneous entities and their cellular decompositions.
It is a new research area and a lot of work should be done on related operations, con-
version to conventional models, as well as on the development of corresponding soft-
ware tools and applications.

7 Specialized language

In principle, one can utilize a universal programming language like C or Java as an
FRep modeling language. However, such languages are too complex and have a lot of
unnecessary features for application to shape representation. Their generalised compi-
lation tools make the specialized task of constructing shape models unnecessarily
difficult. In [13], we introduced a modeling system architecture built around the shape
models in HyperFun, which is a specialized high-level programming language for
specifying FRep models.. The language is designed to include all conventional pro-
gramming constructs and specialized operators necessary for modeling complex ob-
jects, yet without any redundant features. While being minimalist, it supports all main
notions of FRep. HyperFun is also intended to serve as a lightweight exchange proto-
col for FRep models to support platform independence and Internet-based collabora-
tive modeling.

A model in HyperFun can contain the specification of several FRep or constructive
hypervolume objects parameterized by input arrays of point coordinates xi and nu-
merical parameters ai whose values are to be passed from outside the object. The
number of coordinate variables can be greater than three to allow for definition of
higher dimensional objects. Each object is defined by a function describing its geome-
try (the function’s name coincides with the object’s name) accompanied, if necessary,
by a set of scalar functions si representing its attributes. The function can be quite
complex: it is represented with the help of assignment statements (using auxiliary local
variables and arrays, if necessary); conditional selection (’if-then-else’), and iterative
(’while-loop’) statements. Functional expressions are composed using conventional
arithmetic and relational operators. It is possible to use standard mathematical func-
tions (’exp’, ’log’, ’sqrt’, ’sin’, etc.). Fundamental set-theoretic operations are supported
by special built-in operators with reserved symbols ("|" - union, "&" - intersection, "\"
- subtraction, "~" - negation, "@" - Cartesian product). Functional expressions can
also include references to previously defined geometric objects.

In principle, the language is self-contained and allows users to build objects from
scratch, without the use of any pre-defined primitives and transformations. However,
its expressive power is greatly increased by the availability of the system “FRep li-
brary” that is easily extendable and can be adapted to particular application domains
and can even be customised for the needs of particular users. Currently, the version of
the FRep library in general use contains the most common primitives and transforma-

tions of quite a broad spectrum. The user can create his/her own library of objects for
later reuse. A sample of a HyperFun model can be found in Fig. 14.

Fig. 14. Example of a HyperFun program and the corresponding image of the model in the
HyperFun for Windows modeling environment

Application software deals with HyperFun models through using either a built-in
interpreter or HyperFun-to-C/HyperFun-to-Java compilers and utilities of the Hyper-
Fun API. The HyperFun interpreter has been implemented as a small set of functions
in ANSI C. It is quite easy to integrate them into the application software since the
developer needs to deal with only two C-functions. The ’Parse’ function performs
syntax analysis in accordance with the language grammar and semantic rules. For each
object described in the HyperFun program, the function generates an internal repre-
sentation that is actually a collection of the tree structures optimized for subsequent
efficient evaluation. If there are any errors in the program, the function outputs a list
containing the location and details of each error found. Another interpreter function
(’Calc’) is called every time when there is a need to evaluate the function at a given
point in the modeling space and for the given external numerical parameters. Exter-
nally defined values for attribute scalar functions can be passed too. The object’s in-
ternal representation serves as an input parameter for ’Calc’ function that returns both
the value of the "geometric" function and a set of values for "attribute" scalar func-
tions - all evaluated at the given point.

a b

c d

Fig. 15. HyperFun models: a) human embryo digestive system (courtesy of R. Durikovic and S.
Czanner); b) Japanese lacquer ware; c) 3D quaternion Julia fractals (courtesy of F. Delhoume);
d) multilayer geological structure with internal material attribute distribution, an oil well, and
cavities (heterogeneous object).

The formal specification of the internal representation and of the function evalua-
tion procedure was given above. The function ’Parse’ is invoked just once while proc-
essing the HyperFun program to generate a representation that can be considered as a
"byte-code" and can serve as a protocol for data exchange between system compo-
nents ‘Parse’ and ‘Calc’. In fact, these constitute an application programming inter-
face (API) that is simple to use.

The software tools developed to support HyperFun include a polygonizer (surface
mesh generator), a plug-in to a POVRay ray-tracer, and a set of Web-based modeling
tools such as translator to Java, polygonizer in Java, and interactive modeler based on
empirical modeling principles and provided as an applet. Examples of HyperFun
models created and rendered using these tools are shown in Fig. 15.

Main current application areas of FRep and HyperFun include education (geometry
and geometric modeling, computer graphics, programming languages), biological
modeling, cultural heritage preservation, animation and multimedia, and computer art.
The constructive hypervolume models can be applied in multiple material rapid proto-
typing, geological and biological modeling, physics based simulations, and volume
graphics. We are also planning to develop an advanced computer-aided design system
based on several geometric representations including FRep and the constructive hy-
pervolume model.

Acknowledgements

We would like to thank all the co-authors of FRep related papers and developers of
HyperFun software tools, who contributed their knowledge and efforts to our joint
research and development during past 15 years.

References

1. Requicha A., Representations of rigid solids: theory, methods, and systems, Computing
Surveys, vol. 12, No. 4 (1980) 437-464.

2. Rvachev V.L., On the analytical description of some geometric objects, Reports of Ukrainian
Academy of Sciences, vol. 153, No. 4 (1963) 765-767.

3. Rvachev V.L. Methods of Logic Algebra in Mathematical Physics, Naukova Dumka, Kiev
(1974) (in Russian).

4. Rvachev V.L., Theory of R-functions and some applications, Naukova Dumka, Kiev (1982)
(in Russian).

5. Ricci A., A constructive geometry for computer graphics, The computer Journal, vol. 16, No.
2 (1973) 157-160.

6. Blinn J., A generalization of algebraic surface drawing, ACM Transactions on Graphics, vol.
1, No. 3 (1982) 235-256.

7. Bloomenthal J. et al., Introduction to Implicit Surfaces, Morgan Kaufmann Publishers, San
Francisco (1997).

8. Bowyer A., SVLIS Set-theoretic Kernel Modeller, Introduction and User Manual, Informa-
tion Geometers, Winchester, UK (1995).

9. Shapiro V., Theory of R-functions and applications: a primer, TR CPA88-3, Cornell Univer-
sity (1988).

10. Shapiro V., Real functions for representation of rigid solids, Computer Aided Geometric
Design, 11(2) (1994)153-175.

11. Tsukanov I., V. Shapiro V., The architecture of SAGE - a meshfree system based on RFM,
Engineering with Computers, vol. 18, No. 4 (2002) 295-311.

12. Wyvill B., Galin E., Guy A., Extending the CSG tree. warping, blending and Boolean
operations in an implicit surface modeling system, Computer Graphics Forum, vol. 18, No.
2 (1999) 149-158.

13. Adzhiev V., Cartwright R., Fausett E., Ossipov A., Pasko A., Savchenko V., HyperFun
project: a framework for collaborative multidimensional F-rep modeling, Implicit Surfaces
’99 Workshop (Bordeaux, France), J. Hughes and C. Schlick (Eds.) (1999) 59-69, URL
http://www.hyperfun.org/

14. Pasko A., Savchenko V., Adzhiev V., Sourin A., Multidimensional geometric modeling and
visualization based on the function representation of objects, Technical Report 93-1-008,
The University of Aizu, Japan (1993) 47 p.

15. Pasko A., Adzhiev V., Sourin A., Savchenko V., Function representation in geometric
modeling: concepts, implementation and applications, The Visual Computer, vol.11, No.8
(1995) 429-446, URL http://wwwcis.k.hosei.ac.jp/~F-rep/

16. McCormack J., Sherstyuk A., Creating and rendering convolution surfaces, Computer
Graphics Forum, vol. 17, No. 2 (1998) 113-120.

17. Perlin K., Hoffert E., Hypertexture, SIGGRAPH’89, Computer Graphics, vol. 23, No. 4
(1989) 253-262.

18. Sourin A., Pasko A., Savchenko V., Using real functions with application to hair modelling,
Computers and Graphics, vol. 20, No. 1 (1996) 11-19.

19. Savchenko V., Pasko A., Okunev O., Kunii T., Function representation of solids recon-
structed from scattered surface points and contours, Computer Graphics Forum, vol.14,
No.4 (1995) 181-188.

20. Miura K., Pasko A., Savchenko V., Parametric patches and volumes in the functional repre-
sentation of geometric solids, Set-theoretic Solid Modeling: Techniques and Applications,
CSG 96 (Winchester, UK, 17-19 April 1996), Information Geometers, UK (1996) 217-231.

21. Schmitt B., Pasko A., Schlick C., Constructive modelling of FRep solids using spline vol-
umes, Sixth ACM Symposium on Solid Modeling and Applications (June 6-8, 2001, Ann
Arbor, USA), D. Anderson, K. Lee (Eds.), ACM Press (2001)321-322.

22. Sourin A., Pasko A., Function representation for sweeping by a moving solid, IEEE Trans-
actions on Visualization and Computer Graphics, vol.2, No.1, (1996) 11-18.

23. Pasko A., Savchenko V., Projection operation for multidimensional geometric modeling
with real functions, Geometric Modeling: Theory and Practice, W. Strasser, R. Klein, R.
Rau (Eds.), Springer-Verlag, Berlin/Heidelberg (1997) 197-205.

24. Pasko A., Okunev O., Savchenko V., Minkowski sums of point sets defined by inequalities,
Computers and Mathematics with Applications, Elsevier Science, vol. 45, No. 10/11 (2003)
1479-1487.

25. Pasko A., Savchenko V., Blending operations for the functionally based constructive ge-
ometry, Set-theoretic Solid Modeling: Techniques and Applications, CSG 94 Conference
Proceedings, Information Geometers, Winchester, UK (1994) 151-161.

26. Pasko G., Pasko A., Ikeda M., Kunii T., Bounded blending operations, Shape Modeling
International 2002, Banff (Canada, May 17-22), IEEE Computer Society (2002) 95-103.

27. Bjorner D., Jones C., Formal specification and software development, Prentice-Hall, Engle-
wood Cliffs, N.J. (1982).

28. Duce D., Fielding E., Formal specification – a comparison of two techniques, The Com-
puter Journal, vol. 30, No. 4 (1987) 316-327.

29. Pasko A., Adzhiev V., Schmitt B., Schlick C., Constructive hypervolume modeling,
Graphical Models, special issue on Volume Modeling, vol. 63, No. 6 (2001) 413-442.

30. Rvachev V., Sheiko T., Shapiro V., Tsukanov I., Transfinite interpolation over implicitly
defined sets, Computer-Aided Geometric Design, 18 (2001) 195-220.

31. Adzhiev V., Kartasheva E., Kunii T., Pasko A., Schmitt B., Hybrid cellular-functional
modeling of heterogeneous objects, Journal of Computing and Information Science in Engi-
neering, Transactions of the ASME, vol. 2, No. 4 (2002) 312-322.

