Lecture 9

Context-Aware Technologies, Systems and Applications

- Features of Context-aware Computing
- Architectures of Context-aware Computing
- Design of Context-aware Systems/Applications
- Examples of Context-aware Applications
Dey & Abowd: “Context is any information that can be used to characterize the situation of an entity”

Entity: person, place, object that is considered relevant to interaction between a user & an application, including the user & application themselves.

Dey: “A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user’s task.”

Moran, Thomas & Dourish: "Context-aware computing strives to acquire and utilize information about the context of a device (application) to provide services that are appropriate to the particular people, place, time, events."
The early 1990’s saw the arrival of context-aware computing with the introduction of small mobile computing devices (by Schilit, et al, led by M. Weiser).

Olivetti Lab’s Active Badge (1992) used infrared communication between user badges and sensors placed in a building to monitor movement of users for forwarding calls.

PARC’s PARCTab system (1993) uses location information to allow applications to adapt to user’s environment.

Context-aware applications serve as tour guides by presenting information about the user’s current environment. Ex: Cyber Guide from Georgia Tech (1996).

In the later 90’s, frameworks built to support context-aware applications began to be developed. Ex: Georgia Tech’s Context Toolkit (1999).

Since 2000, more and more researches and applications
Examples & Classifications of Context

- **Identity**: user characters, needs
- **Spatial**: location, orientation, speed
- **Temporal**: date, time of day, season
- **Environmental**: temperature, light, noise
- **Social**: people nearby, activity, calendar
- **Resources**: nearby, availability, energy
- **Computation**: CPU, OS, memory, interfaces
- **Network**: wire/wireless, bandwidth, error rate
- **Physiological**: blood pressure, heart rate, tone of voice
- **Psychology**: preference, emotion, tiredness, ...

- **External Context (physical)**
 - Measured by sensors, Ex: location, light, sound, pressure, etc.

- **Internal Context (logical)**
 - Captured from user’s interaction, Ex: user’s goal, emotion, etc.
Another Classification of Context

- **Computing Context**
 - Network connectivity
 - Communication cost
 - Comm. bandwidth
 - Nearby resources

- **User Context**
 - User profile/preference
 - User mood/behavior
 - Other’s presence

- **Environmental Context**
 - Lighting
 - Noise level
 - Traffic conditions
 - Weather

- **Physical Context**
 - Time, Date
 - Location

- **Context History** – Stored Context of Past
 - Computing, User, Environment, Physical Context
User-Related: 5W Context Awareness

- **Who**: Deals with identifying current user and object recognition.
- **Where**: Deals with location identification of user, object, service, ...
- **When**: Deals with temporal aspects of past, present & future
- **What**: Deals with identifying activities of user or object
- **Why**: Deals with subtle context such as user's need, emotion, ...

Input

- Computing Networking
- User-Related: Who is the user? Where is the user? When is it now? What is he doing? Why is he doing so?

Environment Physical

Output

Context-aware Applications (CA)
Various Context-Aware Computing

- Location-Aware Computing
- User-Aware Computing
 → Preference/Need/Intention/Emotion Aware Computing
- Energy-Aware / Power-Aware Computing
- Resource-Aware Computing
- Service-Aware Computing
- Network-Aware Computing
- Environment-Aware Computing
- Situation-Aware Computing
- Safety/Security/Privacy-Aware Computing
- Chance/Opportunity-Aware Computing
- . . .
Location-based Applications

- Finding services based on location
 - physical services (stores, restaurants, ATMs, ...)
 - electronic services (hot spots, printers, ...)
- Using location to improve (network) services
 - incoming or outgoing communications adapts to location
- Using location to provide information
 - tourist guides
 - advertisements
- Making others aware of user location
 - presence (individual)
 - popularity, movement (group)
- Security
 - grant access based on user’s location
Location-based Applications

- People/vehicle tracking
- Product tracking
- Shopping guides
- Travel & tourist guides
- Mobile yellow pages
- Travel planner
- Geocaching
- Mobile games
- Location-aware call handling

- Tracking
- Navigation
- Information
- Games
- Leisure
- Communications
- Emergency
- Advertising
- Billing
- Management

- Indoor routing
- Directions
- Car park assistance
- Traffic management
- Emergency calls
- Automotive assistance
- Banners & alerts
- Road tolling
- Infrastructure
- Customer relationship
- Fleet (scheduling)
- Environmental
- Buddy finder
- Instant messaging
- Security

Done in Ma Lab
Location-based Social Networks

LBSN Software/Apps

- **Loopt**
- **Foursquare**
- **Facebook Places**
- **Dianping**

- Users share photos, comments or check-ins at a location
- Expanded rapidly, e.g., Foursquare gets over 3 million check-ins every day (2011)
LBSN Recommendation

- **Location Recommendations in LBSN**
 - Recommend locations using a user’s location histories and community opinions
 - Location bridges gap between physical world & social networks

- **Existing Solutions**
 - Based on item/user collaborative filtering
 - Similar users gives the similar ratings to similar items
Context-Aware Applications

-- CA applications shown in video below --

- Context Aware Dynamic Lighting
- Gimbal Context Aware Platform
- Outdoor Location-aware Application
- Indoor Location-based Application
- Location-Aware Music Album
- Location Aware Services
Context-Aware Computing Architecture

- Context Direct Processing
 - Tightly coupled
 - No extensibility

- Context Middleware
 - Hiding low-level sensing details
 - Extensible/Scalable

- Context Server
 - Multiple remote accesses
 - Appropriate protocols, QoS
Abstract Layer Architecture

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage/Management</td>
</tr>
<tr>
<td>Preprocessing</td>
</tr>
<tr>
<td>Raw data retrieval</td>
</tr>
<tr>
<td>Sensors</td>
</tr>
</tbody>
</table>

Sensors
- Physical sensors
 - sensor, camera, microphone, accelerometer, GPS, biosensors, etc.
- Virtual sensors
 - From software: browsing an electronic calendar, a travel booking system, emails, mouse movements, keyboard input, bandwidth, etc.
- Logical sensors
 - Combination of physical and virtual sensors with additional information (e.g. context history) from databases
Abstract Layer Architecture (Cont)

- Raw data retrieval
 - Drivers and APIs
 - Query functionality
 - Exchangeable

- Preprocessing
 - Reasoning and interpreting
 - Extraction and quantization
 - Aggregation and compositing

- Storage/Management
 - Public interface to the client
 - Synchronous (pull/polling) and asynchronous (push/subscription)

- Applications
 - Actual reactions on different events and context-instances are implemented to provide desired information/services

- Application
- Storage/Management
- Preprocessing
- Raw data retrieval
- Sensors
Abstract Layer Architecture (Cont)

- Simple/Specific Context-Aware Architecture
 - Context direct processing/use
 - E.g., Active Badge, Cyber Guide

- Complex/General Context-Aware Architecture
 - Context Middleware
 - Context Server
Architecture of Context-Aware System (1)

Context-Aware Application

Middleware

- Context Models
- Context Management

Context Information

Context Facts

Raw Sensor Data

Context Sources

Context Pre-processing

Context Reasoning
Architecture of Context-Aware System

From SRIT

<table>
<thead>
<tr>
<th>Physical Layer</th>
<th>Reception Layer</th>
<th>Abstraction Layer</th>
<th>Aggregation Layer</th>
<th>Fusion Layer</th>
<th>Application Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>Mote</td>
<td>Devices</td>
<td>Repository (Context DB)</td>
<td>CR</td>
<td>CA</td>
</tr>
</tbody>
</table>

CR: Context Refiner; CA: Context-Aware Application
Architecture of Context-Aware System (3)

Device Management

- Environmental Sensors & RFIDs
- Context Aware Devices

Context Management

- Context Interpreter
- Service Discovery
- Inference Engine

Context-to-Service Modeler

Context Knowledge Base

Service Management

- Service Registry
Context Toolkit Architecture

- Toolkit for distributed context-aware apps
 - Framework for acquiring & handling context via standard components
- Three key abstractions
 - Widgets, Interpreters, and Aggregators

Paper by Salber, Dey, Abowd (99)
Context Widget

- A software component that
 - provides applications with access to context information from their operating environment
 - insulates applications from context acquisition
- Responsible for acquiring and abstracting data from particular sensor, separation of concerns, storage
Context Interpreter

- Convert or interpret context to higher level information

Diagram:

- **App**
 - Location Widget
 - Coordinates
 - Location to Room Interpreter
 - Building Map
 - Location to Street Interpreter
 - Google Map
Context Aggregator

- Collect contexts relevant to particular entities, e.g., person
- Further separation, simplifies design
Design Process of Typical Context-aware Systems/Applications

1. Specification
2. Acquisition and Representation
3. Delivery/Distribution
4. Reception and Storage
5. Action/Reaction (the application)
6. Evaluation
Design Process: Specification

- Context to use
- Context behaviors to perform
 - Context-aware delivery/presentation of information and services
 - Context-aware automatic execution of services in physical/cyber environments
 - Tagging of contextual information to objects/events for later retrieval and use

Key step in design process: problem specification
Design Process: Acquisition

- Choose and Install relevant sensors
 - Types and numbers of sensors?
 - Sensors: independent, embedded, networked?
 - Where to sense?
 - How often to update and report?

- Context representation
 - Different types, different kind of values, ...
 - What’s the uniformed/extensible format?

- Store context
 - Files or DBs, what a DB will be used?
 - Each DB for each sensor, one DB for multiple sensors?
 - Timing/Synchronization of data from different sensors?
Design Process: Delivery/Distribution

- Contexts typically captured remotely from applications at different time
- Context captured in sensor-rich environment or device may need to serve multiple applications
 - Need to deliver and distribute context to multiple, remote applications
 - Infrastructure or middleware support
- App/network-level delivery/routing models and transport mechanism
Design Process: Reception

- Application locates relevant sensors/context
 - Sensor/Context service registration
 - Sensor/Context service discovery

- Requests contexts via queries, polls, notifications
 - Query language, event-notification mechanism
 - How often to request?

- Additional interpretation/abstraction/processing
 - Collection, aggregation, filtering, correlation, fusion,...
 - Context semantics/meanings
 - Situation judgment
Design Process: Action/Reaction

- Combine received contexts with previous contexts and system/application states for further analysis
- Perform actions based on the analysis results
- May treat context collection/processing as a separate service
- Check, Evaluation, Improvement, ... according to the original “Specification”
System Issues (1/2)

- **Programming model**
 - Programming the physical world
 - Unreliable sensors, recognition algorithms, plus standard distributed computing issues

- **Interoperability**
 - Sensors, services, and devices
 - Useless if everyone has proprietary / custom systems
 - Need standard data formats, protocols, and frameworks
 - Varying capabilities of sensors, services, and devices

- **May need a middleware layer to decouple applications and context sensing**
 - Collect raw context, translate to application-understandable format, disseminate it
System Issues (2/2)

- Centralized context server or Distributed architecture
- Power management
 - System kept very low-end
 - Motion detection uses interrupt instead of polling to enable sleep mode in 99% of the time
 - Recharge rule/approach, e.g., power/energy harvest
- Transparency
 - Hiding the technology does not suffice
 - In the battery-charged prototype, users forget to replace the battery because the effect of technology is invisible!
- Experiment and Test
 - Verify and improve the system
Homework

Find some context-aware case studies and their related materials (paper, presentation, demo, etc.), study their details, and write a report about its/their context used, and related context-aware technologies, systems, applications, etc. Some references:

- **CoCo - “... Context-Aware Content Delivery” by T. Hayashi, et al**
- **Context-aware Computing, Intel Labs, IDF2010**
- **Context Is Everything (Video by Lama Nachman, Intel)**
- **Real World Context-Aware Applications (Video by A. Dey, 2010)**
- **Location Based Apps (Video)**
- Others you like ➔ Important to get materials from Web!!