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Abstract: A low-degree dual-cube was proposed as an al-
ternative to the hypercubes. A dual-cube DC(m) has m+1
links per node where m is the degree of a cluster (m-cube)
and one more link is used for connecting to a node in an-
other cluster. There are2m+1 clusters and hence the total
number of nodes is22m+1 in a DC(m). In this paper, by us-
ing Gray code, we show that there exists a faulty-free cycle
containing at least22m+1−2 f nodes with f≤m−1 faulty
nodes.
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1 Introduction

The binary hypercube has been widely used as the in-
terconnection network in a wide variety of parallel systems
such as Intel iPSC, the nCUBE [4], the Connection Ma-
chine CM-2 [15], and SGI Origin 2000 [12]. A hypercube
network of dimensionn, or n-cube, contains up to 2n nodes
and hasn edges per node. If uniquen-bit binary addresses
are assigned to the nodes of the hypercube, then an edge
connects two nodes if and only if their binary addresses
differ in a single bit. Because of its elegant topological
properties and the ability to emulate a wide variety of other
frequently used networks, the hypercube has been one of
the most popular interconnection networks for parallel com-
puter/communication systems.

However, the conventional hypercube has a major short-
age, that is, the number of edges per node in a system in-
creases logarithmically as the total number of nodes in the
system increases. Since the number of links is limited to
eight per node with current IC technology, the total num-
ber of nodes in a hypercube parallel computer is restricted
to several hundreds. Therefore, it is interesting to develop
an interconnection network which keeps most of topologi-
cal properties of the hypercube, and has more nodes in the
system than the hypercube with the same number of edges
per node.

Several variations of the hypercube have been proposed
in the literature. Some variations focused on the reduction
of diameter of the hypercube, such as folded hypercube [1]
and crossed cube [2]; some focused on the reduction of the
number of edges of the hypercube, such as cube-connected
cycles [10] and reduced hypercube [17]; and some focused
on the both, like hierarchical cubic network [3]. Generally,
the variations of the hypercube that reduce the diameter, e.g.
crossed cube and hierarchical cubic network, will not sat-
isfy the following key property in the hypercube: each node
can be represented by a unique binary number such that two
nodes are connected by an edge only if the two binary num-
bers differ in one bit. This key property is at the core of
many algorithmic designs for efficient routing and commu-
nication.

A new interconnection network for large parallel sys-
tems calleddual-cube(DC) has been introduced recently
[7] [8]. The dual-cube shares the desired properties of the
hypercube (e.g., the key property of the hypercube men-
tioned above), and increases tremendously the total number
of nodes in the system compared with the hypercube of the
same node degree. The size of the dual-cube can be as large
as thirty thousands with up to eight links per node. It is prac-
tically important to refine the hypercube networks such that
the size of the network can be increased while the number
of the links per node is limited by the technology.

A hamiltonian cycleof an undirected graphG is a simple
cycle that contains every node inG exactly once. Ahamil-
tonian pathin a graph is a simple path that visits every node
exactly once. A hamiltonian path can be obtained from a
hamiltonian cycle by removing any one link from that cy-
cle. A graph that contains a hamiltonian cycle is said to be
hamiltonian. G is k-link hamiltonianif it remains hamilto-
nian after removing anyk links. It is clear that if graphG is
k-connected thenG can be at most (k−2)-link hamiltonian.

Constructing fault-free cycle is important for linear ar-
ray or ring embedding. Previous results about fault tolerant
cycle embedding in networks are as follows. Then-cube is
(n−2)-link hamiltonian [6]. Then-dimensional folded hy-
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percube is (n−1)-link hamiltonian [16]. Then-dimensional
star graph is (n−3)-link hamiltonian [14]. Ak-ary undi-
rected de Bruijn graph is (k−1)-link hamiltonian [11]. An
(m+1)-connected DC(m) is (m−1)-link hamiltonian [9].

The problem of faulty-node tolerant cycle embedding is
to find a cyle in a network with some faulty nodes. The cy-
cle length depend on the number of faulty nodes. For exam-
ple, ann-cube with f faulty nodes can embed a fault-free
cycle cantaining at least 2n− 2 f nodes, wheref ≤ n− 1
[13]. An n-dimensional star graph withf faulty nodes can
embed a fault-free cycle cantaining at leastn!−2 f nodes,
where f ≤ n− 3 [5]. An d-ary n-dimensional undirected
de Bruijn graph with f faulty nodes can embed a fault-
free cycle cantaining at leastdn− n f − 1 nodes, where
f ≤ d−1 [11]. In this paper, we show that a DC(m) with f
faulty nodes can embed a fault-free cycle cantaining at least
22m+1−2 f nodes, wheref ≤m−1.

The rest of this paper is organized as follows. Section 2
describes the dual-cube architecture. Section 3 constructs a
hamiltonian cycle in a DC(m). Section 4 shows that there
exists a faulty-free cycle containing at least 22m+1− 2 f
nodes in a DC(m) with f ≤ m− 1. Section 5 concludes
the paper and presents some future research directions.

2 Dual-cube Architecture

A dual-cube uses hypercubes as basic components. Each
hypercube component is referred to as acluster. Assume
that the number of nodes in a cluster is 2m. In a dual-
cube, there are twoclasseswith each class consisting of
2m clusters. The total number of nodes is 2m×2m×2, or
22m+1. Each node in a dual-cube hasm+ 1 links: m links
are used within cluster to construct anm-cube and a single
link is used to connect a node in a cluster of the other class.
There is no link between the clusters of the same class. If
two nodes are in one cluster, or in two clusters of distinct
classes, the distance between the two nodes is equal to its
Hamming distance(the number of bits where the addresses
of the two nodes have different values). Otherwise, it is
equal to the Hamming distance plus two: one for entering a
cluster of the other class and one for leaving.

An (m+1)-connected dual-cube DC(m) is an undirected
graph on the node set{0,1}2m+1 and there is an edge be-
tween two nodesu = (u2m. . .u0) andv = (v2m. . .v0) if and
only if the following conditions are satisfied:

1. u andv differ exactly in one bit positioni,

2. if 0≤ i ≤m−1 thenu2m = v2m = 0 and

3. if m≤ i ≤ 2m−1 thenu2m = v2m = 1.

Intuitively, the set of nodesu of form (0u2m−1 . . .um ∗
. . .∗), where ∗ means “don’t care”, constitutes anm-
dimensional hypercube. We call these hypercubes clus-

ters of class 0. Similarly, the set of nodesu of form
(1∗ . . . ∗ um−1 . . .u0) constitutes anm-dimensional hyper-
cube and we call them clusters of class 1. The edge con-
necting two nodes in two clusters of distinct classes is called
cross-edge. In the other word,e= (u : v) is a cross-edge if
and only ifu andv differ in the leftmost bit.

Each node in a DC(m) is identified by a unique (2m+1)-
bit number, anid. Eachid contains three parts:class_id,
cluster_id and node_id. In the following discussion, we
useid = (class_id, cluster_id, node_id) to denote the node
address whereclass_id is a 1-bit number,cluster_id and
node_id arem-bit numbers. The bit-position ofcluster_id
andnode_id depends on the value ofclass_id. If class_id =
0 (class_id = 1), thennode_id (cluster_id) is the rightmost
m bits andcluster_id (node_id) is the next (to the left)m
bits. The cluster containing nodeu is denoted asCu. For
any two nodesu andv in a DC(m), Cu = Cv if and only if u
andv are in the same cluster.
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Figure 1. A dual-cube DC(2)

Figure 1 depicts a DC(2) network. In each node,
class_id is shown at the top position. For the nodes of class
0 (class 1),node_id (cluster_id) is shown at the bottom
andcluster_id (node_id) is shown at the middle. Figure 2
shows a DC(3). Notice that only those cross-edges connect-
ing to cluster 0 of class 1 are shown, the other cross-edges
are omitted for simplicity.

The dual-cube has a binary presentation of nodes, simi-
lar to a hypercube, in which two nodes are connected by an
edge only if their addresses differ in one bit. This feature
is the key for designing efficient routing and communica-
tion algorithms in dual-cube. Another important feature of
a dual-cube is that, within the given bound to the number
of links per node, saym+ 1, the network can have up to
22m+1 nodes, more than the hypercube or the hierarchical
cubic network can have.

The DC(m) topological properties are given in [7] and
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Figure 2. A dual-cube DC(3)

the collective communication schemes in DC(m) can be
found in [8].

3 Hamiltonian Cycle in Dual-Cube

In [9], it was proved that the dual-cube is (m− 1)-link
hamiltonian. That is, if a DC(m) containsm−1 faulty links,
there exists a cycle that cantains all the nodes. In this sec-
tion, we show how to construct hamiltonian cycles in dual-
cube because it is needed for fault tolerant cycle embedding
in dual-cube with faulty nodes.

The key for constructing a hamiltonian cycle in a DC(m)
is to construct avirtual hamiltonian cyclethat connects all
2m+1 clusters in DC(m). The virtual hamiltonian cycle in
a DC(m) contains equal numbers of cube-edges and cross-
edges; the cube-edges and the cross-edges are interleaved.
To construct a fault-free hamiltonian cycle in a DC(m) with
up to m− 1 faulty links, we need to put some constraints
on the cube-edges in the virtual hamiltonian cycle since a
hamiltonian path inside a cluster with faulty links might
have fixed end nodes.

We use 0{i} to denote a bit pattern 0. . .0 of i bits. The
hamiltonian cycle in ann-cube can be constructed by the
binary reflected Gray code. A Gray codefor binary num-
bers is a listing of alln-bit numbers so that successive num-
bers, including the first and last, differ in exactly one bit
position. The best known example of the Gray codes is the
binary reflected Gray codewhich can be described as fol-

lows. If P(n) denotes the listing forn-bit numbers, then
P(1) = (0,1). For n greater than 1,P(n) is formed by tak-
ing the list for P(n− 1) with each number prefixed by 0
then following that list by the reverse ofP(n−1) with each
number prefixed by 1. For example,P(2) = (00,01,11,10),
P(3) = (000,001,011,010,110,111,101,100), and so on.
Since the first and last numbers ofP(n) also differ in one
bit position, the code is in fact a cycle. In ann-cube, there
is a link connecting two nodes if their numbers differ in one
bit position: connecting the adjacent nodes, also the first
and last nodes, in the binary reflected Gray code list with
links, a hamiltonian cycle is formed.

Let D(n) denote the listing for the dimensions which
changed in the number sequence in the reflected Gray code
list. Then, D(1) = 0. For n greater than 1,D(n) is
formed by taking the listD(n− 1) two times and insert-
ing a numbern− 1 into between the two lists. For ex-
ample,D(2) = (0,1,0), D(3) = (0,1,0,2,0,1,0), D(4) =
(0,1,0,2,0,1,0,3,0,1,0,2,0,1,0), and so on. That is,D(n)
can be constructed recursively as follows:D(n) = (D(n−
1),n−1,D(n−1)) if n> 1, andD(1) = (0). Note that re-
versing the node numbers performed in the generation of the
reflected Gray code does not affect the dimensions which
change in the sequence of the reflected Gray code: we just
copyD(n−1) to the second half part ofD(n). We callD(n)
a reflected dimension list.

In the what follows, we use (u→ v) to denote a path or
a cycle, and (u : v) to denote a link connecting nodesu and
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v. Also, a format like (00 : 01 : 11 : 10) denotes a path or a
cycle. The following algorithm is for generating a hamilto-
nian cycleP in ann-cube with the reflected dimension list.
The⊕ does bit-wise exclusive OR operation.

Algorithm 1 (cubeHC(n))
begin /* build a hamiltonian cycleP in ann-cube */

D(n) = DL(n); /* D(n): reflected dimension list */
w = 0; /* starting from node 0 */
P = w; /* P is the hamiltonian cycle */
for each dimension numberi in D(n) do

w = w⊕2i ; /* find the next node */
P = P : w; /* add the node intoP */

endfor
end
Procedure DL(n)
begin /* build a reflected dimension list for ann-cube */

if (n == 1) return (0);
else return (DL(n−1), n−1, DL(n−1));

end

Note that the reflected Gray code or reflected dimension
list is just one solution of the Gray codes. By renumbering
the node numbers (exchanging bit positions of the all node
numbers), we can haven! different Gray code sequences.
Furthermore, since there are 2n links in the cycle, break-
ing a different link will get a different path: there are 2nn!
hamiltonian paths with different patterns in ann-cube.

Next, we add a condition to let a hamiltonian cycle con-
tain a given link. This is needed for constructing a fault-free
hamiltonian cycle in a dual-cube with faulty links.

Lemma 1. Given any link e= (u : v) in an n-cube where
u and v are two distinct nodes and d(u,v) = 1, there is a
hamiltonian cycle going through e.

Proof: The lemma can be proved by renumbering every
node in the cube with a mapping functionf (x) so that
u′= f (u) = 0{n−1}0 andv′= f (v) = 0{n−1}1. Then a hamil-
tonian cycle is built by Algorithm 1 with the new num-
bers. Finally, the hamiltonian cycle denoted with the orig-
inal node numbers is obtained by applyingf−1(x) to ev-
ery node number in the built cycle with the new numbers,
where f−1(x) is the reverse of functionf (x): u = f−1(u′)
andv = f−1(v′). One possiblef (x) does exclusive OR op-
eration withu on every node number so that nodeu will
have a new number 0{n−1}0, and then exchanges bit posi-
tions so that the nodev will have a new number 0{n−1}1.

By removinge= (u : v) from the hamiltonian cycle con-
structed in Lemma 1, we get a hamiltonian path from node
u to nodev, (u→ v). We name the procedure that generates
such a path as cubeHP(m,u,v). This procedure will be used
in constructing a hamiltonian cycle in a DC(m).

A hamiltonian cycle in a DC(m) can be constructed as
follows. First, we can build avirtual hamiltonian cycle,
V(m), which connects all the clusters with only two neigh-
boring nodes,u andv for instance, from each cluster (Fig-
ure 3). It is calledvirtual since the cube-edgee= (u : v) in
the cycle will be replaced with a hamiltonian path (u→ v)
in that cluster to form a “real” hamiltonian cycle in DC(m).

The construction of the virtual hamiltonian cycle can
be done by using anextended double-dimension list,
or EDD(m), defined as follows. Let the reflected
double-dimension list beDD(m) = (DD(m−1),m−1,m−
1,DD(m− 1)) if m> 1, andDD(1) = (0,0). Then the
extended double-dimensional listEDD(m) = (DD(m),m−
1,m− 1). Since there are two classes in a dual-cube,
EDD(m) doubles each dimension number in an extended
list which consists ofD(m) plus the highest dimensionm−
1. For example,EDD(2) = (0,0,1,1,0,0,1,1), EDD(3) =
(0,0,1,1,0,0,2,2,0,0,1,1,0,0,2,2), and so on. Then the
virtual hamiltonian cycle can be constructed withEDD(m).
For example,V(2) = (00000, 00001, 10001, 10101, 00101,
00111, 10111, 11111, 01111, 01110, 11110, 11010, 01010,
01000, 11000, 10000). Second, in each cluster we replace
the edgee= (u : v) with a hamiltonian path (u→ v) to con-
nect all the nodes in the cluster to form a hamiltonian cycle
in DC(m).
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. . .
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Figure 3. Virtual hamiltonian cycle

This virtual hamiltonian cycle could be considered as a
high-level cycle which connects all the clusters. Note that
only two neighboring nodes in each cluster are contained
in the virtual hamiltonian cycle, and cube-edges and cross-
edges are interleaved. Because there are two classes in a
DC(m) and each class has 2m clusters, the virtual hamilto-
nian cycle contains 2m×2×2, or 2m×4 nodes. If we group
4 nodes, whose rightm bits of the addresses are the same
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(e.g., 00001, 10001, 10101, 00101), into abig node, the vir-
tual hamiltonian cycle contains 2m big nodes. Therefore,
the algorithm to construct the virtual hamiltonian cycle is
similar to that of the hypercube. The difference is that once
the next node is chosen based on the reflected dimension list
in a cluster of a class, we need to go through the cross-edge
to a cluster of the other class and do the same work in that
cluster. This is the reason whyDD(m) doubles each dimen-
sion number ofD(m). Algorithm 2 shows how to build a
hamiltonian cycle in a DC(m) and hence we have

Theorem 1. There is a hamiltonian cycle in a dual-cube.

Algorithm 2 (dualcubeHC(m))
begin /* build a hamiltonian cycleP in DC(m) */

DD(m) = DDL(m);
EDD(m) = (DD(m),m−1,m−1);
u = 0;
for each dimension numberi in EDD(m) do

if (u is of class 0) v = u⊕2i ;
else v = u⊕2m+i ;
P′ = cubeHP(m,u,v);
P = P : P′;
u = v⊕22m;

endfor
end
Procedure DDL(m)
begin /* build an double-dimension list for a DC(m) */

if (m== 1) return (0,0);
else return (DDL(m−1), m−1, m−1, DDL(m−1));

end

Lemma 2. Given any cube-edge e= (u : v) in a DC(m),
there is a virtual hamiltonian cycle going through e.

Proof: Similar to the proof of Lemma 1.

Since there arem2m−1 links in a cluster, by taking each
of the links as edge (u : v), we havem2m−1 different vir-
tual hamiltonian cycles. These cycles are different but not
disjointed.

Theorem 2. There are2m−1 disjoint virtual hamiltonian
cycles in a DC(m).

Proof: We use induction to prove the theorem. Form= 2
(see Figure 4), two links in a cluster, for examplee0 =
(00000 : 00001) ande1 = (00011 : 00010) in the cluster 0 of
class 0, connect four distinct nodes in the cluster. Therefore,
there are 22−1 = 2 disjoint virtual hamiltonian cycles that
containe0 ande1, respectively. These two cycles are con-
structed byEDD(2) based on the reflected dimension list
D(2) = (0,1,0) with the starting nodes 00000 and 00011,
respectively.
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Figure 4. Disjoint virtual hamiltonian cycles

Generally, there are 2m/2 such links in anm-dimensional
cluster (m-cube): each link takes two nodes from the list of
the reflected Gray codes. Form> 2, the 2m/2 virtual hamil-
tonian cycles that containei , 0≤ i ≤ 2m−1−1, respectively,
can be built based on the reflected dimension listD(m). Be-
causeD(m) = (D(m−1),m−1,D(m−1)), by our induc-
tion hypothesis, the first half of all the cycles are disjointed.
Then, all the paths that go through the (m−1)th dimension
will still be disjoint. Similarly, the second half of all the
cycles are also disjointed. Therefore, all 2m−1 cycles are
disjoint.

4 Fault-Free Cycle Embedding in Dual-Cube
with Faulty Nodes

In this section, we consider the problem of finding fault-
free cycle of maximal length in dual-cube with faulty nodes.
The following lemmas on hypercube are needed.

Lemma 3. Given two links e0 = (u0 : v0) and e1 = (u1 :
v1) in an n-cube, there is a hammiltonian cycle which goes
through e0 and e1.

Proof: We use induction onn to prove the lemma. Forn =
3, the lemma is true as shown as in Figure 5. Without loss
of generality, letu0 = 0 andv0 = 4. Any of other links,e1,
appears in the cycle shown in Figure 5(a), (b) or (c).

We assume that the lemma holds forn = k≥ 3. Divid-
ing ann-cube along any dimension we can get two (n−1)-
cubes, namely subcube0 and subcube1, respectively. For
n = k+ 1, because there aren≥ 4 dimensions, we can de-
vide then-cube along a dimension so thate0 ande1 are in
subcube0 and/or subcube1, that is, they do not appear in the
dimension with which then-cube was divided.

If e0 and e1 are in a same subcube, subcube0 for in-
stance, by our assumption, there is a hamitonian cycle going
throughe0 ande1. Select a link(x : y) other thane0 ande1,
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Figure 5. Links in hamiltonian cycle in 3-cube

by Lemma 1, there is a hamiltonian cycle going through
(x′ : y′)1 in subcube1. Replacing(x : y) and (x′ : y′) with
(x : x′) and (y : y′), a hamiltonian cycle going throughe0

ande1 is obtained.
If e0 ande1 are in different subcubes, say,e0 is in sub-

cube0 ande1 is in subcube1, by Lemma 1, a hamiltonian cy-
cle going throughe0 in subcube0 can be built. Select a link
(x : y) so that(x : y) 6= e0 and(x′ : y′) 6= e1, by our assump-
tion, there is a hamitonian cycle going through(x′,y′) and
e1 in subcube1. Replacing(x : y) and(x′ : y′) with (x : x′)
and(y : y′), a hamiltonian cycle going throughe0 ande1 is
obtained.

Lemma 4. Given three links e0 = (u0 : v0), e0
1 = (u1 : w)

and e11 = (w : v1) in an n-cube, where w6= u0 and w 6= v0,
there is a hammiltonian cycle which goes through e0, e0

1 and
e1

1.

Proof: We use induction onn to prove the lemma. Forn =
3, the lemma is true as shown as in Figure 5. Without loss
of generality, letu0 = 0 andv0 = 4. Forw= 1, all three link
patterns are shown in Figure 5(a), (b) and (c), respectively.
The cases ofw = 2, 5, 6 are similar to the case ofw = 1.
For w = 3, all three link patterns are shown in the figure,
and the cases ofw = 7 are similar to the case ofw = 3.

We assume that the lemma holds forn = k≥ 3. Forn =
k+ 1, because there aren≥ 4 dimensions, we can devide
the n-cube along a dimension so thate0 = (u0 : v0), e0

1 =
(u1 : w) ande1

1 = (w : v1) do not appear in the dimension
with which then-cube was divided. Note thate0

1 = (u1 : w)
ande1

1 = (w : v1) are in a same subcube. Assume thate0 is
in subcube0.

If e0
1 = (u1 : w) and e1

1 = (w : v1) are in subcube0, by
our assumption, there is a hamitonian cycle going through
e0 = (u0 : v0), e0

1 = (u1 : w) and e1
1 = (w : v1). Select a

link (x : y) other thane0 = (u0 : v0), e0
1 = (u1 : w) ande1

1 =
(w : v1), by Lemma 1, there is a hamiltonian cycle going
through(x′ : y′) in subcube1. Replacing(x : y) and(x′ : y′)
with (x : x′) and(y : y′), a hamiltonian cycle going through
e0 ande1 is obtained.

1The addresses ofx andx′ diff only in a bit position – the dimension
with which then-cube was divided, so asy andy′.

If e0
1 = (u1 : w) ande1

1 = (w : v1) are in subcube1. By
Lemma 1, a hamiltonian cycle going throughe0 in subcube0
can be built. Select a link(x : y) other thane0 so that(x′ :
y′) 6= e0

1 and (x′ : y′) 6= e1
1, by our assumption, there is a

hamitonian cycle going through(x′,y′), e0
1 = (u1 : w) and

e1
1 = (w : v1) in subcube1. Replacing(x : y) and (x′ : y′)

with (x : x′) and(y : y′), a hamiltonian cycle going through
e0 ande1 is obtained.

Lemma 5. Given a link e= (u : v) in an n-cube with
f ≤ n− 2 faulty nodes, where u and v are two non-faulty
nodes connected by a link e, there is a fault-free cycle which
contains at least2n−2 f nodes and goes through link e.

Proof: We use induction onn to prove the lemma. Forn =
3, the lemma is true as shown as in Figure 6, whereu = 3
andv = 7. The figure shows the case of node 0 faulty. The
case of node 4 faulty is similar. If node 1 is fault, the cycle
is the same as in the figure and the case in which node 2, 5,
or 6 is fault is similar to the case of node 1 faulty.

u

e
v

Faulty
node

10

32

54

76

Figure 6. Fault-free cycle in 3-cube

We assume that the lemma holds forn = k≥ 3. Forn =
k+ 1, without loss of generality, assume thate belongs to
subcube0. Letf0 and f1 be the numbers of faulty nodes in
subcube0 and subcube1, respectively, wheref0 + f1 = f ≤
k−1. The proof of the lemma is divided into three cases.

u

v

x

y

x′

y′
subcube1subcube0e

Figure 7. Fault-free cycle in n-cube (case 1)

Case 1: f0 < f and f1 < f . By our assumption, there
is a fault-free cycle containing at least 2k− 2 f0 nodes go-
ing through linke in subcube0. Let(x : y) be a link in the
fault-free cycle so that the corresponding nodesx′ andy′ in
subcube1 are not fault. By our assumption, in subcube1,
there is a fault-free cycle which contains at least 2k− 2 f1
nodes and goes through link(x′ : y′). By replacing the links
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(x : y) and(x′ : y′) with the links(x : x′) and(y : y′), respec-
tively, a fault-free cycle can be built that contains at least
(2k−2 f0)+(2k−2 f1) = 2k+1−2 f nodes and goes through
link e in (k+1)-cube.

u

v

x

y

x′

y′

subcube1subcube0e w w′

Figure 8. Fault-free cycle in n-cube (case 2)

Case 2: f0 = f . Let w be a faulty node. Supposew
appears in the hamiltonian cycle built in Case 1. Letx
andy be the two neighbors ofw in the cycle. Because no
faulty node exists in subcube1, there is a hamiltonian cy-
cle of length 2k such that thex′ andy′ are the two neigh-
bors of w′ in the cycle. By replacing the links(x′ : w′)
and (w′ : y′) with the links (x : x′) and (y : y′), respec-
tively, a fault-free cycle can be built that contains at least
(2k−2( f −1)−1)+ (2k−1) = 2k+1−2 f nodes and goes
through linke in (k+1)-cube.

Case 3: f1 = f . Note that we can select a dimension to
divide then-cube so thatu′ andv′ are not fault. Because, if
u′ andv′ are fault, we can divide then-cube so that at least
one ofu′ andv′ is in subcube0 and apply the proof of Case
1 or Case 2.

Let w′ be a faulty node. Supposew′ appears in the
hamiltonian cycle built in Case 1. Letx′ andy′ be the two
neighbors ofw′ in the cycle. Because no faulty node ex-
ists in subcube0, by applying Lemma 4, there is a hamil-
tonian cycle of length 2k such that thex and y are the
two neighbors ofw in the cycle. By replacing the links
(x : w) and(w : y) with the links(x : x′) and(y : y′), respec-
tively, a fault-free cycle can be built that contains at least
(2k−1)+ (2k−2( f −1)−1) = 2k+1−2 f nodes and goes
through linke in (k+1)-cube.

Lemma 6. There is a fault-free cycle containing at least
2n−2 f nodes in an n-cube with f≤ n−1 faulty nodes.

Proof: We use induction onn to prove the lemma. The
lemma is true forn = 3 as shown as in Figure 9, where two
faulty nodes are denoted by dotted cycles. We assume that
the lemma holds forn = k≥ 3. Forn = k+1, let f0 and f1
be the numbers of faulty nodes in subcube0 and subcube1,
respectively, wheref0 + f1 = f ≤ k. For f = k ≥ 3, we
can always select a dimension to divide then-cube so that
f0 < f and f1 < f .

By our assumption, there is a fault-free cycle containing
at least 2k− 2 f0 nodes in subcube0. It is true that either
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(a)d = 1
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(b) d = 2
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(c) d = 3

Figure 9. Fault-free cycle in 3-cube

f0≤ k−2 or f1≤ k−2: Because, otherwise,f = f0+ f1≥
2k−2> k, for k≥ 3, but our assumption isf = f0+ f1≤ k.
Without loss of generality, assumef1 ≤ k− 2. Let (x : y)
be a link in the fault-free cycle in subcube0 so that the cor-
responding nodesx′ andy′ in subcube1 are not fault. By
applying Lemma 5, a fault-free cycle containing at least
(2k−2 f0)+(2k−2 f1) = 2k+1−2 f nodes and goes through
link e in (k+1)-cube.

Now, we show that there is a fault-free cycle contain-
ing at least 22m+1−2 f nodes withf ≤m−1 faulty nodes
in a DC(m). By Theorem 2, there are 2m−1 disjoint vir-
tual hamiltonian cycles in a DC(m). Becausef ≤m−1<
2m−1, there exists a virtual hamiltonian cycle that contains
no faulty node. Letfi , i = 1,2, . . . ,h be the numbers of
faulty nodes in theh distinct clusters (m-cubes), respec-

tively, where
h
∑

i=1
fi = f ≤m−1.

We first consider thatfi < f for i = 1,2, . . . ,h. By
Lemma 5, there exists a fault-free cycle containing at least
2m− 2 fi nodes in each ofh m-cubes fori = 1,2, . . . ,h,
that goes through the link in the virtual hamiltonian cy-
cle. Therefore, it is easy to construct a fault-free cycle in

the DC(m) that contains
h
∑

i=1
(2m− 2 fi) + (2m+1− h)2m =

22m+1−2 f nodes.
Then we consider all the faulty nodes appear in a same

cluster. Without loss of generality, assume that cluster 0
contains all thef ≤m−1 faulty nodes. By Lemma 6, there
exists a fault-free cycle containing at least 2m− 2 f nodes
in cluster 0. Lete0 be a link in this fault-free cycle. By
Lemma 2, we can construct a virtual hamiltonian cycle in
DC(m) that containse0. Then we replacee0 with the path
of length at least 2m−2 f −1 in cluster 0, and in each of the
other 2m+1−1 clusters, we replace each link in the virtual
hamiltonian cycle with a hamiltonian path. Thus, a fault-
free cycle in DC(m) containing at least(2m−2 f )+(2m+1−
1)2m = 22m+1−2 f nodes can be built. We summarize these
results in the following theorem.

Theorem 3. There is a fault-free cycle containing at least
22m+1− 2 f nodes in a DC(m) with f faulty nodes, where
f ≤m−1.
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Table 1. Properties of fault tolerance: dual-cube vs hypercube

Number of nodes Link faulty Node faulty
Hypercube 2n (n−2)-hamiltonian Faulty-free cycle contains 2n−2 f nodes,f ≤ n−1
Dual-cube 22m+1 (m−1)-hamiltonian Faulty-free cycle contains 22m+1−2 f nodes,f ≤m−1

Table 1 summarize the properties of fault tolerance of the
dual-cube and hypercube wheren = m+ 1. The dual-cube
holds almost the same properties as the hypercube but can
connect much more nodes than the hypercube with the same
number of links per node.

5 Conclusion and Future Work

In this paper, we showed that a fault-free cycle contain-
ing at least 22m+1−2 f nodes can be constructed in a DC(m)
with f ≤ m− 1 faulty nodes. Because a dual-cube can
link much more nodes than other variations of hypercube, it
could be used as an interconnection network for large scale
parallel computers.

Recently, much of the community has moved on to
lower-dimensional topologies such as meshes and tori.
However, the SGI Origin2000, a fairly recent multiproces-
sor, does use a hypercube topology, so the dual-cube could
be of use to industry. A lot of issues concerning the dual-
cube require further research. Some of them are:

1. Evaluate the architecture complexity vs. performance of
benchmarks vs. real cost.

2. Investigate the embedding of other frequently used
topologies into a dual-cube.

3. Develop techniques for mapping application algorithms
onto a dual-cube.

4. Develop fault-tolerant routing algorithms for a dual-cube
with faulty nodes.
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