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Abstract: A low-degree dual-cube was proposed as an al-  Several variations of the hypercube have been proposed
ternative to the hypercubes. A dual-cube DC(m) hasIn  in the literature. Some variations focused on the reduction
links per node where m is the degree of a cluster (m-cube)of diameter of the hypercube, such as folded hypercube [1]
and one more link is used for connecting to a node in an- and crossed cube [2]; some focused on the reduction of the
other cluster. There ar@™! clusters and hence the total number of edges of the hypercube, such as cube-connected
number of nodes i82™1 in a DC(m). In this paper, by us-  cycles [10] and reduced hypercube [17]; and some focused
ing Gray code, we show that there exists a faulty-free cycle on the both, like hierarchical cubic network [3]. Generally,
containing at leasp?™! — 2f nodes with f< m— 1 faulty the variations of the hypercube that reduce the diameter, e.g.
nodes. crossed cube and hierarchical cubic network, will not sat-

_ ) isfy the following key property in the hypercube: each node
Keywords: Interconnection networks, hypercube, hamilto- -5 pe represented by a unique binary number such that two

nian cycle, Gray code, fault-tolerant embedding nodes are connected by an edge only if the two binary num-
_ bers differ in one bit. This key property is at the core of
1 Introduction many algorithmic designs for efficient routing and commu-
nication.

The binary hypercube has been widely used as the in- A new interconnection network for large parallel sys-
terconnection network in a wide variety of parallel systems tems calleddual-cube(DC) has been introduced recently
such as Intel iPSC, the nCUBE [4], the Connection Ma- [7] [8]. The dual-cube shares the desired properties of the
chine CM-2 [15], and SGI Origin 2000 [12]. A hypercube hypercube (e.g., the key property of the hypercube men-
network of dimensiom, or n-cube, contains up to"hodes  tioned above), and increases tremendously the total number
and has edges per node. If uniquebit binary addresses  of nodes in the system compared with the hypercube of the
are assigned to the nodes of the hypercube, then an edgeame node degree. The size of the dual-cube can be as large
connects two nodes if and only if their binary addresses as thirty thousands with up to eight links per node. Itis prac-
differ in a single bit. Because of its elegant topological tically important to refine the hypercube networks such that
properties and the ability to emulate a wide variety of other the size of the network can be increased while the number
frequently used networks, the hypercube has been one obf the links per node is limited by the technology.
the most popular interconnection networks for parallel com- A hamiltonian cyclef an undirected grap@ is a simple
puter/communication systems. cycle that contains every node @Gexactly once. Ahamil-

However, the conventional hypercube has a major short-tonian pathin a graph is a simple path that visits every node
age, that is, the number of edges per node in a system inexactly once. A hamiltonian path can be obtained from a
creases logarithmically as the total number of nodes in thehamiltonian cycle by removing any one link from that cy-
system increases. Since the number of links is limited to cle. A graph that contains a hamiltonian cycle is said to be
eight per node with current IC technology, the total num- hamiltonian G is k-link hamiltonianif it remains hamilto-
ber of nodes in a hypercube parallel computer is restrictednian after removing ank links. It is clear that if grapl® is
to several hundreds. Therefore, it is interesting to developk-connected thef® can be at mosik{2)-link hamiltonian.
an interconnection network which keeps most of topologi-  Constructing fault-free cycle is important for linear ar-
cal properties of the hypercube, and has more nodes in theay or ring embedding. Previous results about fault tolerant
system than the hypercube with the same number of edgegycle embedding in networks are as follows. Theube is
per node. (n—2)-link hamiltonian [6]. Then-dimensional folded hy-
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percube istf—1)-link hamiltonian [16]. Ther-dimensional ters of class 0. Similarly, the set of nodesof form

star graph is{—3)-link hamiltonian [14]. Ak-ary undi- (1x...xUn_1...Ug) constitutes arm-dimensional hyper-
rected de Bruijn graph ik{1)-link hamiltonian [11]. An cube and we call them clusters of class 1. The edge con-
(m+1)-connected D@X) is (m—1)-link hamiltonian [9]. necting two nodes in two clusters of distinct classes is called

The problem of faulty-node tolerant cycle embedding is cross-edgeln the other worde= (u: v) is a cross-edge if
to find a cyle in a network with some faulty nodes. The cy- and only ifu andv differ in the leftmost bit.
cle length depend on the number of faulty nodes. For exam-  Each node in a DQYX) is identified by a unique (2+1)-
ple, ann-cube with f faulty nodes can embed a fault-free bit number, arid. Eachid contains three partslassid,
cycle cantaining at leastn2- 2f nodes, wherd <n-—1 cluster id andnode id. In the following discussion, we
[13]. An n-dimensional star graph with faulty nodes can  useid = (class id, cluster id, node id) to denote the node
embed a fault-free cycle cantaining at least- 2f nodes, address wherelassid is a 1-bit numbergcluster id and
where f < n—3 [5]. An d-ary n-dimensional undirected node id arem-bit numbers. The bit-position afluster id
de Bruijn graph withf faulty nodes can embed a fault- andnode id depends on the value ofass id. If class id =
free cycle cantaining at least” — nf — 1 nodes, where 0 (classid = 1), thennode id (cluster id) is the rightmost
f <d-—1[11]. In this paper, we show that a D@ with f m bits andcluster id (node id) is the next (to the leftjn
faulty nodes can embed a fault-free cycle cantaining at leastbits. The cluster containing nodeis denoted a€,. For
221 _ 2f nodes, wherd < m—1. any two nodesl andv in a DCm), C, = C, if and only ifu

The rest of this paper is organized as follows. Section 2 andv are in the same cluster.
describes the dual-cube architecture. Section 3 constructs a
hamiltonian cycle in a DQXY). Section 4 shows that there
exists a faulty-free cycle containing at least"?! — 2f
nodes in a DGf) with f <m—1. Section 5 concludes
the paper and presents some future research directions.

2 Dual-cube Architecture

A dual-cube uses hypercubes as basic components. Each
hypercube component is referred to aslaster Assume
that the number of nodes in a cluster i8.21In a dual-
cube, there are twalasseswith each class consisting of
2™ clusters. The total number of nodes 82 2™ x 2, or
2?1 Each node in a dual-cube hast 1 links: m links ke class O—s}e class 1 s classO
are used within cluster to construct amncube and a single
link is used to connect a node in a cluster of the other class. Figure 1. A dual-cube DC(2)
There is no link between the clusters of the same class. If
two nodes are in one cluster, or in two clusters of distinct
classes, the distance between the two nodes is equal to its Figure 1 depicts a DC(2) network. In each node,
Hamming distancé&he number of bits where the addresses class id is shown at the top position. For the nodes of class
of the two nodes have different values). Otherwise, it is O (class 1),nodeid (cluster id) is shown at the bottom
equal to the Hamming distance plus two: one for entering aandcluster id (node id) is shown at the middle. Figure 2
cluster of the other class and one for leaving. shows a DC(3). Notice that only those cross-edges connect-
An (m+1)-connected dual-cube D@ is an undirected ing to cluster 0 of class 1 are shown, the other cross-edges
graph on the node s¢0,1}2™1 and there is an edge be- are omitted for simplicity.

tween two nodes = (Uzm...Up) andv = (Vom...Vo) if and The dual-cube has a binary presentation of nodes, simi-
only if the following conditions are satisfied: lar to a hypercube, in which two nodes are connected by an
edge only if their addresses differ in one bit. This feature
1. uandv differ exactly in one bit position, is the key for designing efficient routing and communica-
2.if0 <i <m-1 thenugn = von=0and tion algorithms in dual-cube. Another important feature of

a dual-cube is that, within the given bound to the number

of links per node, sayn+ 1, the network can have up to
Intuitively, the set of nodes of form (Ougm_1...Um * 221 nodes, more than the hypercube or the hierarchical

...x), where *+ means “don’t care”, constitutes am- cubic network can have.

dimensional hypercube. We call these hypercubes clus- The DCn) topological properties are given in [7] and

3. ifm<i<2m-1 thenuym = vom = 1.
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Figure 2. A dual-cube DC(3)

the collective communication schemes in Bf(can be lows. If P(n) denotes the listing fon-bit numbers, then

found in [8]. P(1) = (0,1). Forn greater than 1P(n) is formed by tak-
ing the list for P(n— 1) with each number prefixed by 0
3 Hamiltonian Cycle in Dual-Cube then following that list by the reverse B{n— 1) with each

number prefixed by 1. For exampR(2) = (00,01,11,10),

P(3) = (000,001,011,010,110,111,101,100), and so on.
Since the first and last numbers Bfn) also differ in one

bit position, the code is in fact a cycle. In arcube, there

is a link connecting two nodes if their numbers differ in one
bit position: connecting the adjacent nodes, also the first

%ind last nodes, in the binary reflected Gray code list with
links, a hamiltonian cycle is formed.

In [9], it was proved that the dual-cube B¢ 1)-link
hamiltonian. That s, if a DG{) containan— 1 faulty links,
there exists a cycle that cantains all the nodes. In this sec
tion, we show how to construct hamiltonian cycles in dual-
cube because it is needed for fault tolerant cycle embeddin
in dual-cube with faulty nodes.

The key for constructing a hamiltonian cycle in a D ( e ) ) )
is to construct avirtual hamiltonian cyclethat connects all Let D(n) denote the listing for the dimensions which
2™1 clusters in DCf). The virtual hamiltonian cycle in ghanged in the number sequence in the reflected Grgy code
a DC(m) contains equal numbers of cube-edges and cross/it:  Then, D(1) = 0. For n greater than 1D(n) is
edges; the cube-edges and the cross-edges are interleave@med by taking the lisD(n — 1) two times and insert-

To construct a fault-free hamiltonian cycle in a D@with ing @ numbem — 1 into between the two lists. For ex-
up tom— 1 faulty links, we need to put some constraints @MpPle,D(2) = (0,1,0), D(3) = (0,1,0,2,0,1,0), D(4) =
on the cube-edges in the virtual hamiltonian cycle since a(9:1,0,2,0,1,0,3,0,1,0,2,0,1,0), and so on. That i) (n)

hamiltonian path inside a cluster with faulty links might €&n be constructed recursively as follovia(n) = (D(n—
have fixed end nodes. 1),n—1,D(n—1)) if n> 1, andD(1) = (0). Note that re-

We use 0} to denote a bit pattern.0.0 of i bits. The versing the node numbers performed in the generation of the
hamiltonian cycle in am-cube can be constructed by the reflected Gray code does not affect the dimensions which
binary reflected Gray codeA Gray codefor binary num- change in the sequence of the reflected Gray code: we just
bers is a listing of alh-bit numbers so that successive num- COPYD(n—1) to the second half part &(n). We callD(n)
bers, including the first and last, differ in exactly one bit areflected dimension list
position. The best known example of the Gray codes is the In the what follows, we useu(— V) to denote a path or
binary reflected Gray codwhich can be described as fol- a cycle, and\: v) to denote a link connecting nodasand
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v. Also, a format like (00 : 01 : 11 : 10) denotes a path or a
cycle. The following algorithm is for generating a hamilto-
nian cycleP in ann-cube with the reflected dimension list.
The & does bit-wise exclusive OR operation.

Algorithm 1 (cubeHCH))

begin /* build a hamiltonian cycld® in ann-cube */
D(n) = DL(n); * D(n): reflected dimension list */
w=0; /* starting from node 0 */
P=w, /* P is the hamiltonian cycle */

for each dimension numbem D(n) do

w=wa?2: I* find the next node */
P=P:w; /* add the node intd® */
endfor

end

Procedure DLi)

begin /* build a reflected dimension list for amcube */
if (n== 1) return (0);
else return(DL(n—1),n—1, DL(n—1));

end

Note that the reflected Gray code or reflected dimension
list is just one solution of the Gray codes. By renumbering
the node numbers (exchanging bit positions of the all node
numbers), we can have different Gray code sequences.
Furthermore, since there ar@ Bnks in the cycle, break-
ing a different link will get a different path: there arér2
hamiltonian paths with different patterns in mtube.

Next, we add a condition to let a hamiltonian cycle con-
tain a given link. This is needed for constructing a fault-free
hamiltonian cycle in a dual-cube with faulty links.

Lemma 1. Given any link e= (u: v) in an n-cube where
u and v are two distinct nodes andwdv) = 1, there is a
hamiltonian cycle going through e.

node in the cube with a mapping functidr(x) so that

U = f(u)=0{"Yoandv = f(v)=0{"11. Then ahamil-
tonian cycle is built by Algorithm 1 with the new num-
bers. Finally, the hamiltonian cycle denoted with the orig-
inal node numbers is obtained by applyifiig}(x) to ev-
ery node number in the built cycle with the new numbers,
where f~1(x) is the reverse of functiori(x): u= f~1(u)
andv = f~1(V). One possibld (x) does exclusive OR op-
eration withu on every node number so that nodevill
have a new numberl®-1}0, and then exchanges bit posi-
tions so that the node will have a new number 011,

O

By removinge= (u: v) from the hamiltonian cycle con-
structed in Lemma 1, we get a hamiltonian path from node
uto nodev, (u— V). We name the procedure that generates
such a path as cubeHR(u, v). This procedure will be used
in constructing a hamiltonian cycle in a DY,
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A hamiltonian cycle in a DGt) can be constructed as
follows. First, we can build airtual hamiltonian cycle,
V(m), which connects all the clusters with only two neigh-
boring nodesy andv for instance, from each cluster (Fig-
ure 3). Itis calledvirtual since the cube-edge= (u:v) in
the cycle will be replaced with a hamiltonian path-{ v)
in that cluster to form a “real” hamiltonian cycle in Di@Y.

The construction of the virtual hamiltonian cycle can
be done by using arextended double-dimension Jist
or EDD(m), defined as follows. Let the reflected
double-dimension list bBD(m) = (DD(m—1),m—1,m—
1,DD(m-1)) if m> 1, andDD(1) = (0,0). Then the
extended double-dimensional IEDD(m) = (DD(m),m—

1, m—1). Since there are two classes in a dual-cube,
EDD(m) doubles each dimension number in an extended
list which consists oD(m) plus the highest dimensian—

1. For exampleEDD(2) = (0,0,1,1,0,0,1,1), EDD(3) =
(0,0,1,1,0,0,2,2,0,0,1,1,0,0,2,2), and so on. Then the
virtual hamiltonian cycle can be constructed wgBD(m).

For exampley (2) = (00000, 00001, 10001, 10101, 00101,
00111, 10111,111211, 01111, 01110, 11110, 11010, 01010,
01000, 11000, 10090 Second, in each cluster we replace
the edgee = (u: v) with a hamiltonian pathu— v) to con-
nect all the nodes in the cluster to form a hamiltonian cycle
in DC(m).

High-level
virtual
hamiltonian
cycle

Low-level
cluster
hamiltonian
path

Cube-edge
is allowed
tobea

fault link

Cross-egde

Figure 3. Virtual hamiltonian cycle

This virtual hamiltonian cycle could be considered as a
high-level cycle which connects all the clusters. Note that
only two neighboring nodes in each cluster are contained
in the virtual hamiltonian cycle, and cube-edges and cross-
edges are interleaved. Because there are two classes in a
DC(m) and each class ha§'Zlusters, the virtual hamilto-
nian cycle contains™x 2 x 2, or 2" x 4 nodes. If we group
4 nodes, whose right bits of the addresses are the same



(e.g., 00001, 10001, 10101, 00101), intoignode, the vir-

tual hamiltonian cycle contains™big nodes. Therefore,
the algorithm to construct the virtual hamiltonian cycle is
similar to that of the hypercube. The difference is that once
the next node is chosen based on the reflected dimension list
in a cluster of a class, we need to go through the cross-edge
to a cluster of the other class and do the same work in that

cluster. This is the reason wiyD(m) doubles each dimen-
sion number oD(m). Algorithm 2 shows how to build a
hamiltonian cycle in a DG() and hence we have

Theorem 1. There is a hamiltonian cycle in a dual-cube.

Algorithm 2 (dualcubeHGt))
begin /* build a hamiltonian cyclé? in DC(m) */
DD(m) = DDL(m);
EDD(m) = (DD(m),m—1,m—1);
u=_0;
for each dimension numbéim EDD(m) do
if (uis of class 0) v=u®2';
else v=u@2m™i:
P’ = cubeHPn, u,v);

P=P:F;
u=vag22m
endfor

end
Procedure DDL)
begin  /* build an double-dimension list for a D@ */
if (m== 1) return (0,0);
else return(DDL(Mm—1),m—1, m—1, DDL(m— 1));
end

Lemma 2. Given any cube-edge-e (u: v) in a DC(m),
there is a virtual hamiltonian cycle going through e.

Proof: Similar to the proof of Lemma 1.

Since there are2™ ! links in a cluster, by taking each
of the links as edgeu(: v), we havem2™ 1 different vir-

tual hamiltonian cycles. These cycles are different but not

disjointed.

Theorem 2. There are2™ 1 disjoint virtual hamiltonian
cycles in a DC(m).

Proof: We use induction to prove the theorem. For 2
(see Figure 4), two links in a cluster, for examm@g=
(00000 : 0000 ande; = (00011 : 0001Din the cluster 0 of

f¢— class 0—s}«—— class 1 ——»}«— class 0 —»]

Figure 4. Disjoint virtual hamiltonian cycles

Generally, there ard? 2 such links in am-dimensional
cluster (m-cube): each link takes two nodes from the list of
the reflected Gray codes. For> 2, the 2"/2 virtual hamil-
tonian cycles that contai, 0 <i < 2™ 1—1, respectively,
can be built based on the reflected dimensiorDigh). Be-
causeD(m) = (D(m—1),m—1,D(m— 1)), by our induc-
tion hypothesis, the first half of all the cycles are disjointed.
Then, all the paths that go through the-{1)th dimension
will still be disjoint. Similarly, the second half of all the
cycles are also disjointed. Therefore, dlt2 cycles are
disjoint. O

4 Fault-Free Cycle Embedding in Dual-Cube
with Faulty Nodes

In this section, we consider the problem of finding fault-
free cycle of maximal length in dual-cube with faulty nodes.
The following lemmas on hypercube are needed.

Lemma 3. Given two links g = (up : Vp) and @ = (uz :
v1) in an n-cube, there is a hammiltonian cycle which goes
through @ and q.

Proof: We use induction on to prove the lemma. Far=
3, the lemma is true as shown as in Figure 5. Without loss
of generality, letug = 0 andvg = 4. Any of other links,e,
appears in the cycle shown in Figure 5(a), (b) or (c).

We assume that the lemma holds foe k > 3. Divid-
ing ann-cube along any dimension we can get twe-()-
cubes, namely subcubeO and subcubel, respectively. For
n=k+ 1, because there are> 4 dimensions, we can de-

class 0, connect four distinct nodes in the cluster. Therefore,vide then-cube along a dimension so th&tande; are in
there are 21 = 2 disjoint virtual hamiltonian cycles that subcube0 and/or subcubel, that is, they do not appear in the
containey andey, respectively. These two cycles are con- dimension with which th&-cube was divided.

structed byEDD(2) based on the reflected dimension list If &g ande; are in a same subcube, subcubeO for in-
D(2) = (0,1,0) with the starting nodes 00000 and 00011, stance, by our assumption, there is a hamitonian cycle going
respectively. throughey ande;. Select a link(x : y) other tharey andey,
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If €) = (u; : w) andel = (w:vq) are in subcubel. By
Lemma 1, a hamiltonian cycle going througgin subcube0
can be built. Select a linkx: y) other thaney so that(x' :
y) # € and (X : y) # e}, by our assumption, there is a
hamitonian cycle going througtx’,y'), €] = (u; : w) and
el = (w:vj) in subcubel. Replacing:y) and (X :y)
with (x:X') and(y:y'), a hamiltonian cycle going through
€ andey is obtained. O

Figure 5. Links in hamiltonian cycle in 3-cube Lemma 5. Given a link e= (u : V) in an n-cube with
f < n-— 2 faulty nodes, where u and v are two non-faulty
nodes connected by a link e, there is a fault-free cycle which
by Lemma 1, there is a hamiltonian cycle going through contains at lease” — 2f nodes and goes through link e.
(X :y)! in subcubel. Replacingx:y) and (X :y) with

(x:x) and(y:y), a hamiltonian cycle going througk Proof: We use induction on to prove the lemma. Far=
ande; is obtained. 3, the lemma is true as shown as in Figure 6, where3
If ep ande; are in different subcubes, sag is in sub- andv = 7. The figure shows the case of node 0 faulty. The

cubeO ane; is in subcubel, by Lemma 1, a hamiltonian cy- case of node 4 faulty is similar. If node 1 is fault, the cycle
cle going throughey in subcube0 can be built. Select a link IS the same as in the figure and the case in which node 2, 5,
(x:y) sothat(x:y) # ey and(xX :y) # ey, by our assump-  Or 6 is faultis similar to the case of node 1 faulty.

tion, there is a hamitonian cycle going througt,y’) and
e, in subcubel. Replacing:y) and (X :y) with (x: X)
and(y:Y), a hamiltonian cycle going through ande; is
obtained. O

Lemma 4. Given three links @= (U : Vo), € = (uz : w)
and e} = (w:v1) in an n-cube, where w# up and w# vp,
there is a hammiltonian cycle which goes through@ and

el.

Proof: We use induction on to prove the lemma. Far=

3, the lemma is true as shown as in Figure 5. Without l0Ss  \ne assume that the lemma holds for k > 3. Forn =

of generality, letip = 0 andvp = 4. Forw=1, allthreelink | 1 without loss of generality, assume thabelongs to
patterns are shown in Figure 5(a), (b) and (c), respectively.sybcube0. Lef and f; be the numbers of faulty nodes in
The cases ofv = 2, 5, 6 are similar to the case of = 1. subcube0 and subcubel, respectively, wHgre f; = f <

Forw = 3, all three link patterns are shown in the figure, k_ 1. The proof of the lemma is divided into three cases.
and the cases af = 7 are similar to the case af = 3.

We assume that the lemma holds foe k > 3. Forn=
k+ 1, because there are> 4 dimensions, we can devide
the n-cube along a dimension so that= (up : Vo), eg =
(up 1 w) andel = (w: v1) do not appear in the dimension
with which then-cube was divided. Note thaf = (uy : w)
andel = (w: vy) are in a same subcube. Assume tgis
in subcubeO.

If & = (u;:w) andel = (w:v;) are in subcubeO, by
our assumption, there is a hamitonian cycle going through Figure 7. Fault-free cycle in  n-cube (case 1)
e = (Up: Vo), € = (ug : w) andel = (w:v;). Select a
link (x:y) other thaney = (Up : Vo), €2 = (uz : W) ande} =
(w:vp), by Lemma 1, there is a hamiltonian cycle going
through(xX : y') in subcubel. Replacing:y) and(x :y')
with (x:x') and(y:¥y), a hamiltonian cycle going through
€ andey is obtained.

Figure 6. Fault-free cycle in 3-cube

Case 1 fg < f andf; < f. By our assumption, there
is a fault-free cycle containing at least 2 2y, nodes go-
ing through linke in subcubeO. Letx:y) be a link in the
fault-free cycle so that the corresponding nogesndy’ in
subcubel are not fault. By our assumption, in subcubel,
1The addresses ofand’ diff only in a bit position — the dimension  there is a fault-free cycle which contains at ledst-2f,
with which then-cube was divided, so asandy’. nodes and goes through litgk : y'). By replacing the links

76



(x:y) and(x :y') with the links(x: X') and(y : y'), respec-
tively, a fault-free cycle can be built that contains at least .-~
(2K—2fg) + (2K—2f;) = 2<+1 —2f nodes and goes through ~ “ |
link ein (k+ 1)-cube.

(@)d=1 (b)d =2

Figure 9. Fault-free cycle in 3-cube

fo <k—2or f; <k—2: Because, otherwisé¢,= fo+ f; >
2k— 2>k, for k> 3, but our assumption is= fg+ f; <k
Figure 8. Fault-free cycle in  n-cube (case 2) Without loss of generality, assunfe < k—2. Let(x:y)

be a link in the fault-free cycle in subcubeO so that the cor-
responding nodeg andy in subcubel are not fault. By
applying Lemma 5, a fault-free cycle containing at least
(2K—2fg) + (2K 2f;) = 2€t1 —2f nodes and goes through
link ein (k+ 1)-cube. O

Case 2 fo = f. Letw be a faulty node. Suppose
appears in the hamiltonian cycle built in Case 1. ket
andy be the two neighbors ok in the cycle. Because no
faulty node exists in subcubel, there is a hamiltonian cy-

cle of length 2 such that the¢ andy’ are the two neigh- Now, we show that there is a fault-free cycle contain-
bors ofw in the cycle. By replacing the link&< : w) ing at least 2™ — 2f nodes withf < m— 1 faulty nodes
and (W :y)) with the links (x: x) and (y : y), respec- 5 a DCqr). By Theorem 2, there are™? disjoint vir-
tively, a fault-free cycle can be built that contains at least 1,51 hamiltonian cycles in a D@). Becausef < m—1 <
(2=2(f —1) —1) + (2~ 1) = 2** — 2f nodes and goes M1 there exists a virtual hamiltonian cycle that contains
through linkein (k+ 1)-cube. no faulty node. Letf;, i = 1,2,... h be the numbers of

~Case 3 fy = f. Note that we can select a dimension 0 fayity nodes in theh distinct clusters rp-cubes), respec-
divide then-cube so that/ andV' are not fault. Because, if h
U andV are fault, we can divide the-cube so that at least ~ tively, whereizlfi =f<m-1
one ofu’ andV is in subcubeO and apply the proof of Case  \we first consider thatf; < f for i = 1,2,....h. By

1orCase 2. _ Lemma 5, there exists a fault-free cycle containing at least
Let W be a faulty node. Suppos# appears in the  om _ 5f nodes in each oh mcubes fori = 1,2,...,h,
hamiltonian cycle built in Case 1. Lat andy’ be the two 5t goes through the link in the virtual hamiltonian cy-

neighbors ofw’ in the cycle. Because no faulty node ex- cje. Therefore, it is easy to construct a fault-free cycle in
ists in subcubeO, by applying Lemma 4, there is a hamil-

h
tonian cycle of length 2 such that thex andy are the  the DC{n) that containsy (2™ — 2f;) + (2™ — h)2™ =
two neighbors ofw in the cycle. By replacing the links  s2mi1_ 5 nodes. =t
(x:w) and(w: y) with the links(x: x') and(y: y), respec-
tively, a fault-free cycle can be built that contains at least
(2K —1) 4+ (2¥—2(f —1) — 1) = 2¢*1 — 2f nodes and goes
through linke in (k+ 1)-cube. O

Then we consider all the faulty nodes appear in a same
cluster. Without loss of generality, assume that cluster 0
contains all thef < m— 1 faulty nodes. By Lemma 6, there
exists a fault-free cycle containing at least22f nodes
Lemma 6. There is a fault-free cycle containing at least [N cluster 0. Lete be a link in this fault-free cycle. By
2" _ 2f nodes in an n-cube with € n— 1 faulty nodes. Lemma 2, we can construct a virtual hamiltonian cycle in

DC(m) that containgy. Then we replacey with the path
Proof: We use induction om to prove the lemma. The of length atleast2—2f —1 in cluster 0, and in each of the
lemma is true fon = 3 as shown as in Figure 9, where two other 21 — 1 clusters, we replace each link in the virtual
faulty nodes are denoted by dotted cycles. We assume thahamiltonian cycle with a hamiltonian path. Thus, a fault-
the lemma holds fon=k > 3. Forn=k+1, let fo and f; free cycle in DCin) containing at leag2™ — 2f) + (2™ —
be the numbers of faulty nodes in subcube0 and subcubell)2™ = 22™1_ 2 nodes can be built. We summarize these
respectively, wherdg+ f1 = f <k Forf =k> 3, we results in the following theorem.
can always select a dimension to divide theube so that
fo< fandfy < f. Theorem 3. There is a fault-free cycle containing at least

By our assumption, there is a fault-free cycle containing 22™1 — 2f nodes in a DC(m) with f faulty nodes, where
at least » — 2fy nodes in subcubeO. It is true that either f <m-—1.
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Table 1. Properties of fault tolerance: dual-cube vs hypercube

Number of nodes Link faulty Node faulty
Hypercube 2" (n— 2)-hamiltonian Faulty-free cycle contains'2- 2f nodes,f <n-1
Dual-cube 22m+1 (m—1)-hamiltonian | Faulty-free cycle containg?*! — 2f nodes,f <m—1
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