
Efficient Algorithms for finding a Trunk on a Tree Network and its Applications

Yamin Li, Shietung Peng
Department of Computer Science

Hosei University
Tokyo 184-8584 Japan

{yamin;speng}@k.hosei.ac.jp

Wanming Chu
Department of Computer Hardware

University of Aizu
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract

Given an edge-weighted tree T , a trunk is a path P in T
which minimizes the sum of the distances of all vertices in
T from P plus the weight of path P . In this paper, we give
efficient algorithms for finding a trunk of T . The first al-
gorithm is a sequential algorithm which runs in O(n) time,
where n is the number of vertices in T . The second algo-
rithm is a parallel algorithm which runs in O(log n) time
using O(n/ log n) processors on EREW PRAM model. We
also present an application of trunk for efficient multicast in
wireless ad hoc networks.

1. Introduction

In network theory, optimally locating a service facil-
ity/infrastructure for communication in a network has long
been of great interest for decades. Due to the variety of
facilities/infrastructures and different criteria for optimal-
ity, abundant optimization problems in networks have been
defined and studied. The one that was extensively studied
in the literature is the “core-family”, a path-shaped or tree-
shaped facility which minimizes the sum of the distances
from the facility to all vertices in the network [6, 7, 8, 9].

However, in some applications for wireless ad hoc net-
works, the criteria for optimization are different with that of
the traditional core-family: Instead of merely minimizing
the cumulative distances, the cumulative distances plus the
weight of the facility, defined as the sum of the weights of
all edges in the facility, should be minimized. The path that
satisfies the above criteria of optimality in a tree network is
called a trunk in this paper. The contributions of this paper
are:

1. Show a new type of optimization problem in tree net-
works;

2. Give efficient algorithms, both sequential and parallel
ones, for constructing a trunk in a tree network; and

3. Give an example application of the new optimization
problem in wireless ad hoc networks.

The rest of this paper is organized into five sections. In
Section 2, we give the necessary notation, definitions, and
preliminary results for trunk. In Section 3 we give the defi-
nition of the rooted trunk and theoretical background for the
design of efficient algorithms to construct a trunk. The se-
quential algorithm and the parallel algorithm are presented
in Sections 4 and 5, respectively. We give an application
and conclude this paper in Section 6.

2. A Trunk of A Tree

Let T = (V,E) be a free tree. The size of T , |T |,
is the number of vertices in V . Each edge e ∈ E has
an associated positive weight w(e). If w(e) = 1 for ev-
ery e ∈ E then T is unweighted, otherwise weighted.
Let P = (V ′, E′), V ′ ⊆ V and E′ ⊆ E, be a path
in T . For any two vertices u, v ∈ V , let P (u, v) be the
unique path from u to v, and let the distance from u to v,
d(u, v) =

∑

e∈E′ w(e). Let the degree of vertex v ∈ V ,
denoted as deg(v), be the number of vertices adjacent to v.
A leaf of T is a vertex l ∈ V with deg(l) = 1. For any
path P , let w(P) =

∑

e∈E′ w(e) be the weight of path P .
When P = P (u, v) we have w(P) = d(u, v). For v ∈ V ,
we define the distance d(v, P) = minu∈V ′ d(u, v), and the
cumulative distance δ(P) =

∑

v∈V d(v, P). When P is a
single vertex u, we have δ(u) =

∑

v∈V d(v, u).
A trunk is a path P in T which minimizes δ(P) +w(P).

Notice that the core that was traditionally studied in the lit-
erature is defined as a path P that minimizes δ(P). For the
tree in Figure 1, there is a unique core C = a − b − c − d
with δ(C) = 1. However, there are total six trunks Pt:
b− c, b− c− d, b− c− e, a− b− c, a− b− c− d, and
a− b− c− e with δ(Pt) + w(Pt) = 5.

2

1 1
1

b

ad

c

e

Figure 1. A simple example tree

The unweighted tree in Figure 2 shows that there exists
a tree T in which a core is not a trunk and vice versa. For
simplicity, we show only the calculation on the subtree as
shown as in Figure 2, the contribution from the same (right)
part had been exluded. Let path P = v − a − b − c − d
(Figure 2(a)) and path P ′ = v − x− y (Figure 2(b)). Since
δ(P) = 15 and δ(P ′) = 16, path P will be selected for
core. However, since δ(P) + w(P) = 15 + 4 = 19 and
δ(P ′) + w(P ′) = 16 + 2 = 18, P ′ will be selected for
trunk.

(a) A core of tree

2
2

2

2

2

2
2

1

(b) A trunk of tree

1
1

1

1

1

1

1

2

3

4

a

b

c

d

v

x

y

a

b

c

d

v

x

y

P

P ′

Figure 2. A tree in which a core is not a trunk
and vice versa

In general, the two end-vertices of a trunk may not nec-
essarily be leaves. Let v0 be an end-vertex of trunk P . For
A,B ⊆ V , letA/B = {u|u ∈ A, u 6∈ B}. LetN(v) be the
set of vertices adjacent to v in T . By Lemma 1, the vertices
in N(v0)/P must be leaves of T , and the extension of P to
any leaf in N(v) must be a trunk. Therefore, without loss
of generality, we assume that the end-vertices of a trunk are
leaves.

Lemma 1 Let P (v, w) be a path in subtree ST (v, u).
We have δ(P (v, w)) ≥ δ(P (u,w)) + w((v, u)) and
δ(P (v, w)) = δ(P (u,w)) + w((v, u)) if and only if u is
a leaf.

Proof: From the definition of δ(P), we have δ(P (v, w)) =
δ(P (u,w))+w((v, u))×|ST (u, v)|. |ST (u, v)| = 1 if and
only if u is a leaf. Therefore, the lemma is true. o

For each v ∈ V (T), there are |N(v)| subtrees attached
to v through edges (v, u) ∈ E, where u ∈ N(v). Let
ST (u, v) be the subtree of T attached to v through the edge
(v, u). Notice that ST (v, u) is the subtree of T attached to
u through the edge (u, v) (see Figure 3).

ST (u, v) ST (v, u)vu

Figure 3. ST (v, u) and ST (u, v) in T

3. Rooted Trunk and Theory of Trunk

For efficiently constructing a trunk, we orient tree T into
a rooted tree Tr with root r. For any vertex v ∈ Tr, we
denote the parent of v as p(v), the subtree rooted at v as Tv ,
and the number of vertices in Tv as |Tv|. Let a rooted trunk
P (r, l0) be a path from root r to leaf l0 which minimizes
δ(P (r, l)) + w(P (r, l)) among all paths from r to leaf l in
Tr. We show that the problem of constructing a trunk in
T can be reduced to the problem of constructing a rooted
trunk in a rooted tree Tr. The following lemmas form the
theoretical background for the reduction.

Lemma 2 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then P (r, l0)∩ P (l1, l2) 6= ∅
for any trunk P (l1, l2) in T .

Proof: Assume that P (r, l0) ∩ P (l1, l2) = ∅ for a trunk
P (l1, l2). Let i be the closest vertex in P (r, l0) to P (l1, l2)
and j the closest vertex in P (l1, l2) to P (r, l0) (see Fig-
ure 4). Let path C = P (l0, i) ∪ P (i, j) ∪ P (j, l2). Since
P (r, l0) is a rooted trunk, δ(P (l0, i)) + w(P (l0, i))) ≤
δ(P (l1, i))+w(P (l1, i)). Since i is not a leaf, by Lemma 1,
we have δ(P (l1, i)) + w(P (l1, i)) < δ((P (l1, j)) +
w(P (l1, j)). Similar, we have δ(P (l0, j)) + w(P (l0, j)) <
δ((P (l0, i)) + w(P (l0, i)). From these equations, we get
δ(P (l0, j)) + w(P (l0, j)) < δ((P (l1, j)) + w(P (l1, j)).
This implies δ(C) +w(C) < δ(P (l1, l2)) +w(P (l1, l2)), a

contradiction to the fact that P (l1, l2)) is a trunk. Therefore,
the lemma must be true. o

r l1

i j

l0 l2

Figure 4. P (r, l0) is a rooted trunk in Tr and
P (l1, l2) is a trunk

Theorem 1 Let rooted tree Tr be an orientation of T and
P (r, l0) a rooted trunk in Tr. Then a rooted trunk in rooted
tree Tl0 , a new orientation of T , is a trunk in T .

Proof: Let P (l0, l′0) be a rooted trunk in Tl0 . As-
sume that P (l1, l2) is a trunk in T . From Lemma 2,
P (l0, l′0) ∩ P (l1, l2) 6= ∅. Let P (i, j) = P (l0, l′0) ∩
P (l1, l2), where i is the vertex in P (i, j) closest to
vertices l0 and l1 (see figure 5). Since P (r, l0) is
a rooted trunk, we have δ(P (l0, i)) + w(P (l0, i)) ≤
δ(P (l1, i)) + w(P (l1, i)). Similarly, Since P (l0, l′0) is
a rooted trunk, we have δ(P (l′0, j)) + w(P (l′0, j)) ≤
δ(P (l2, j))+w(P (l2, j)). Therefore, we get δ(P (l0, l′0))+
w(P (l0, l′0)) ≤ δ(P (l1, l2)) + w(P (l1, l2)). We conclude
that P (l0, l′0) is a trunk in T . o

l′0

l0 l1

i

r
j

l2

Figure 5. P (i, j) = P (l0, l′0) ∩ P (l1, l2)

From Theorem 1, the problem of constructing a trunk in
T can be solved as follows:

1. Orient tree T into a rooted tree Tr with an arbitrary
vertex r;

2. Construct a rooted trunk P (r, l0) in Tr;
3. Re-orient T into Tl0 ;
4. Construct a rooted trunk in Tl0 .

In Figure 6, we first show an example tree T with an arbi-
trarily selected vertex r in Figure 6(a). Then, in Figure 6(b),
we show the rooted tree Tr and a rooted trunk P (r, l0) in Tr.
We have δ(P (r, l0)) +w(P (r, l0)) = 26 + 5 = 31. Finally
in Figure 6(c), we show the rooted tree Tl0 and a rooted
trunk P (l′0, l0) in Tl0 . The path P (l0, l′0) is a trunk in T ,
and we have δ(P (l0, l′0)) + w(P (l0, l′0)) = 19 + 7 = 26.

(a) T (b) Tr

(c) Tl0

31

26

r

r

l0

r

l0

l′0

Figure 6. (a) An example tree; (b) a rooted
trunk in Tr; (c) a rooted trunk in Tl0 which is a
trunk in T

It was well known that orientation of a tree can be done
optimally both sequentially and in parallel. The key for an
efficient algorithm to construct a trunk lies on efficiently
constructing a rooted trunk. We present two optimal al-
gorithms, sequentially and in parallel, for constructing a
rooted trunk in a rooted tree Tr in the next two sections,
respectively. Based on these two algorithms, the problem
of constructing a trunk in tree T can be solved optimally
both sequentially and in parallel.

4. Sequential algorithm for finding a rooted
trunk

In order to find minl is a leaf in Tr{δ(P (r, l))+w(P (r, l))},
the value of |Tv| for every node v and δ(l) for every leaf
l in Tr should be computed in advance. Computing |Tv|
for every node v in O(n) time is trivial. We show in the

following lemma, Lemma 3, that δ(l), for every leaf l in Tr
can be computed in O(n) time.

Lemma 3 Given a weighted tree T , δ(v) for v ∈ V (T) can
be computed in O(n) time.

Proof: First, we orient T into a rooted tree Tr inO(n) time.
δ(r) can be computed in O(n) time through a post-order
traversal of Tr by the formula δ(r) =

∑

v∈V (Tr) d(v, r) =
∑

v∈V (Tr)/{r} w((v, p(v)))×|Tv|. Then, δ(v) for all v 6= r

can be computed in O(n) time through a pre-order traver-
sal of Tr by the formula δ(v) = δ(p(v)) − w((v, p(v))) ×
(|Tv|− (n−|Tv|)) = δ(p(v))−w((v, p(v)))× (2|Tv|−n).
o

The sequential algorithm for finding a rooted trunk of
a rooted tree Tr works from bottom up: once the rooted
trunks of all subtrees Tw, where node w is a child of node
v, have been found, the rooted trunk of subtree Tv can
be computed. Computing a rooted trunk of subtree Tv is
done as follows: Let v1, . . . , vk be the children of v in
Tr. Let P (li, vi) be the rooted trunk in subtree Tvi . From
the formula δ(P (li, v)) + w(P (li, v)) = δ(P (li, vi)) +
w(P (li, vi))−w((v, vi))× (|Tvi | − 1), the algorithm com-
putes δ(P (li, v)) + w(P (li, v)) and finds the minimum for
all i, 1 ≤ i ≤ k. The path that reaches this minimum for v
is a rooted trunk in subtree Tv . The algorithm is described
formally in Algorithm 1. For finding a rooted trunk in Tr,
we simply call Find rooted trunk(Tr).

Algorithm 1 (Find rooted trunk(Tv))
Input: rooted tree Tv
Output: leaf lv and δ(P (lv, v)) + w(P (lv, v))

/* P (lv, v) is a rooted trunk in Tv . */
begin
if v is a leaf then return ((v, δ(v))

else /* assume vi, 1 ≤ i ≤ k are the children of v. */
for i← 1 to k do

(li, valuei)← Find rooted trunk(Tvi);
endfor
min← min1≤i≤k{valuei − w((v, vi))× (|Tvi | − 1)};
min leaf ← lj ; /*valuej−w((v, vj))×(|Tvj |−1) = min*/
return(min leaf,min);

endif
end

Figure 7 and Figure 8 show how the algorithm works for
the example tree Tr in Figure 6(b) and Tl0 in Figure 6(c),
respectively.

Theorem 2 A rooted trunk in a rooted tree Tr can be found
in O(n) time.

31

92 92

7878 86 86 86 86

92 92

7058

74

68 68

74

52

34

45

Figure 7. A working example 1 for Algorithm
1

92 9286 86 86 86

92

78 78

70

68 68 74

52 58

40

33

28
26

26

Figure 8. A working example 2 for Algorithm
1

Proof: From the definition of rooted trunk and the formula
δ(P (l, p(v)))+w(P (l, p(v))) = δ(P (l, v))+w(P (l, v))−
w((p(v), v)) × (|Tv| − 1), it is easy to see that Algorithm
1 finds a rooted trunk in Tr. The algorithm performs a
post-order traversal of Tr with O(1) computations per step.
Therefore, rooted trunk in Tr can be found in O(n) time. o

Corollary 1 A trunk in a tree T can be found inO(n) time.

Proof: The rooted Tr can be obtained from an orientation
of tree T in O(n) time. From Theorem 2, finding a rooted
trunk in a rooted tree takesO(n) time. A trunk can be found
by performing twice the process of a tree orientation fol-
lowed by finding a rooted trunk in the rooted tree. There-
fore, the corollary is true. o

5. Parallel algorithm for finding a rooted trunk

The parallel computation model used in this paper is
EREW PRAM. A PRAM consists of a collection of au-
tonomous processors, each having access to a common
memory. At each step, every processor performs the same
instruction, with a number of processors masked out. In the

EREW PRAM model, a memory location cannot be simul-
taneously accessed by more than one process. Two tech-
niques of parallel computation for trees, parallel Euler-tour
and tree contraction that are introduced briefly below, will
be used in the proposed parallel algorithm.

Given a tree T , the Euler path of T is a linear list of
2n − 2 directed edges, where n = |V (T)|. We describe
Euler tour briefly as follows: For each vertex v in V (T), we
set next(ui → v) = v → u(i+1)mod k for 0 ≤ i ≤ k − 1,
where k = deg(v) and ui, 0 ≤ i ≤ k− 1, are the neighbors
of v in T (see Figure 9). For tree orientation with root r, we
set next(udeg(r)−1 → r) = end of list. By applying the
optimal list ranking algorithm [2], each edge in T can be
oriented away from the root r by assigning it the direction
of one of its two directed edges in the Euler path which
has larger rank. We conclude that tree T can be oriented
into a rooted tree Tr in O(log n) time using O(n/ log n)
processors on an EREW PRAM.

v1 v2 v3

v

Figure 9. An Euler tour

The tree contraction is a parallel technique on a rooted
tree Tr which reduces Tr in parallel to its root by a sequence
of vertex removals. The tree contraction algorithm of Abra-
hamson et al. [1], which will be used in our algorithm, is
described briefly below. First, the rooted tree Tr should be
presented as a binary tree through the standard transforma-
tion in which a node v with k > 2 children is presented as
a binary subtree of hight k − 1 with k − 2 dummy nodes of
v (see Figure 10).

dummy

v1 v2 v3

v

v1 v2

v3

v

Figure 10. A binary tree presentation of a tree

A tree contraction sequence of length s is defined as a set
of binary trees {BTi|1 ≤ i ≤ s} such that BTi is obtained
from BTi−1 by one of the following two operations:

1. prune(v): leaf v in BTi−1 is removed;

2. bypass(v): a non-root node v in BTi−1 with only one
child is removed and the parent of v becomes the par-
ent of the unique child of v.

It was showed in [1] that every binary tree has an optimal
contraction sequence of length O(log n) and this sequence
can be obtained in O(log n) time using O(n/ log n) pro-
cessors on an EREW PRAM. The following lemma shows
that δ(v) for all v ∈ V (T) can be computed efficiently in
parallel.

Lemma 4 Given a rooted tree Tr, |Tv| and δ(v) for all v ∈
V (T) can be computed in O(log n) time using O(n/ log n)
processors on an EREW PRAM.

Proof: The number of nodes in subtree Tv rooted at v,
|Tv|, for all v ∈ V (Tr), can be computed in parallel us-
ing Euler-tour technique as follows: For the directed edges
e oriented away from root r, set f(e) = 0; and for the di-
rected edges e′ oriented toward r, set f(e′) = 1. Then,
perform parallel prefix computation of f on the list of Euler
tour and let the result be the function g. It is easy to see
that g(e′0) equals to |Tv|, where e′0 = (v, u) is the unique
directed edge starting from v that is oriented toward r. δ(v)
for all v ∈ V (Tr) can be computed in parallel using tree
contraction and expansion techniques. First, we show that
δ(r) can be computed in parallel using tree contraction as
follows: For binary tree BT1 in the sequence of tree con-
traction, set f(v) = 1 if v is a leaf; otherwise, f(v) = 0.
While performing prune(v), where v is a leaf in BTi, we
set f(p(v)) = f(p(v))+w((v, p(v))×|Tv|. While perform-
ing bypass(v), where v has a unique child u in Ti, we set
f(p(v)) = f(p(v))+w((v, p(v))×|Tv| and w((u, p(v)) =
w((v, p(v)) +w((u, v)), where (u, p(v)) is a new edge cre-
ated by bypass operation. It is easy to see from the defini-
tion of δ that f(r) = δ(r) while tree contraction is done.
Finally, δ(v) for v 6= r can be computed in parallel through
the tree expansion technique which is the inverse process
of tree contraction. The tree expansion expands r to Tr
through inv prune and inv bypass operations. Initially,
we set g(r) = δ(r). While performing inv prune(v) to
create a child u of v, we set g(u) = g(v)+w((u, v))×(n−
2|Tu|) (w((u, v)) and |Tu| are kept in v while performing
prune(u)). Similarly, while performing inv bypass(v),
we set g(u) = g(v) + w((u, v)) × (n − 2|Tu|) and
w((u, z)) = w((v, z)) − w((u, v)), where z is the unique
child of v generated by bypass(u) in tree contraction. From
the formula δ(v) = δ(p(v)) +w((v, p(v))× (n− 2|Tv|), it
is easy to see that after tree expansion is done, g(v) = δ(v)
for every v ∈ Tr. o

Next, we use the tree contraction technique on Tr to
compute in parallel the value min{δ(P (r, l))+w(P (r, l))},
where l is a leaf in Tr. For each node v in BTi, a bi-
nary tree in the sequence of trees generated by the tree

Algorithm 2 (Parallel rooted trunk(Tr))
Input: rooted tree Tr
Output: min{δ(P (r, l)) + w(P (r, l))}, where l is a leaf in Tr
begin

In parallel, compute δ(l) for all leaf l ∈ Tr;
Transfer Tr into a binary tree presentation;
for each node v ∈ Tr do

if v is a dummy node then w(v, p(v)) = 0;
if v is a leaf then f(v) = δ(v) else f(v) =∞;
g(v) = 0;

endfor
Perform tree contraction to generate a sequence of binary trees {BTi|1 ≤ i ≤ s},

where BT1 is a binary representation of Tr and BTs = {r};
/* BTi is obtained from BTi−1 by prune(v) or bypass(v) operations. */
for each prune(v) do

f(p(v)) = min{f(p(v)), f(v)− w((v, p(v))× (n− |Tv| − 1)}+ g(v);
endfor
for each bypass(v) do

f(p(v)) = min{f(p(v)), f(v)− w((v, p(v))× (n− |Tv| − 1)}+ g(v);
w((u, p(v)) = w((v, p(v)) + w((u, v)); /* u is the unique child of v. */
g(u) = g(u) + w(v, p(v))× (|Tv| − |Tu|);

endfor
return(f(r));

end

contraction, we compute two functions, f(v) and g(v). If
v is a leaf in BTi, the value of function f(v) represents
min{δ(P (v, l)) + w(P (v, l))}, where l is a leaf in Tv , the
subtree of Tr rooted at v. Therefore, when tree contraction
ends, f(r) will be the answer we want. The function g(v) is
used to adjust the distance saving created by path extension
from v to p(v) where edge (v, p(v)) is an edge created by
the bypass operation. We will explain this effect in details
later.

Initially, in BT1, we set f(v) = δ(v) if v is a leaf, oth-
erwise, f(v) = ∞; g(v) = 0 for all v. Then, for each
prune(v), we should update the value of f(p(v)) by the
formula f(p(v)) = min{f(p(v)), f(v) − w((v, p(v)) ×
(n − |Tv| − 1)}; And, for each bypass(v), we should
update the value of f(p(v)) by the formula f(p(v)) =
min{f(p(v)), f(v) − w((v, p(v)) × (n − |Tv| − 1)} and
give the new edge (u, p(v)) weight w((v, p(v)) +w((u, v))
so that, when perform prune(u) the distance saving for the
path extension from u to p(v) calculated by the formula
w(u, p(v)) × (n − |Tu| − 1) will be correct. However, the
effect of the nodes in Tv on the distance saving due to the
path extension from u to p(v) is over-calculated in the for-
mula (the distance saving due to the path extension for the
nodes in Tv is w(u, v), not w(u, p(v))). Therefore, a fac-

tor g(u) = w(v, p(v)) × (|Tv| − |Tu|) is needed to com-
pensate this over-calculation. That is, the update formula
for f(p(v)) should be f(p(v)) = min{f(p(v)), f(v) −
w((v, p(v)) × (n − |Tv| − 1)} + g(v). The algorithm is
shown in Algorithm 2.

Figure 11 shows how the algorithm works for the exam-
ple tree Tr in Figure 6(b). Notice thatBT3 comes fromBT2

by a bypass(v). From the algorithm, we get f(p(v)) =
52 − (20 − 8 − 1) = 41, w(u, p(v)) = 1 + 1 = 2, and
g(u) = 8− 6 = 2. During the prune(u) operation in BT4,
we get f(p(u)) = min{41, 58−2×(20−6−1)+2} = 34.
Finally, since BT6 = {r} comes from BT5 by a prune op-
eration, we get f(r) = min{58, 34− (20− 16− 1) + 0} =
31.

Theorem 3 Given a rooted tree Tr, min{δ(P (r, l)) +
w(P (r, l))}, where l is any leaf in Tr, can be computed in
O(log n) time using O(n/ log n) processors on an EREW
PRAM.

Proof: We apply tree contraction on tree Tr with O(1) ad-
ditional computations of functions f and g on BTi, 1 ≤
i ≤ s, while performing prune and bypass operations.
Initially, we set g(v) = 0 and f(v) = δ(v) if v is a
leaf in BT1; otherwise f(v) = ∞. If v is a dummy

(a) BT1 = Tr (binary)

r

92

dummy

927878

86 86 86 86

92 92

70

(b) BT2: Prune

r

dummy

(c) BT3: Bypass

dummy

(d) BT4: Prune

58

(e) BT5: Prune

58

(e) BT6: Prune

31

7460

68 68

74

2

7460 68 68

74

52

41

58 52

41
2

34

u

v

p(v)

p(v)

g(u)
= 2

u
g(u)
= 2

p(u)

u

∞

∞

∞

∞

∞

∞

∞

∞ ∞

∞

∞

∞

∞

∞ ∞

∞

f(r) = 74− (20− 3− 1) = 58

∞r r

r r

Figure 11. A working example for Algorithm 2

node, since v and p(v) are identical in the original tree, we
should set w(v, p(v)) = 0. While performing prune(v),
where v is a leaf, we set f(p(v)) = min{f(p(v)), f(v) −
w((v, p(v)) × (n − |Tv| − 1)} + g(v), where the com-
pensation factor g(v) is introduced by the bypass opera-
tion as explained before. The above formula for updating
f(p(v)) comes from the fact δ(p(v)) + w(P (p(v), l) =
δ(P (v, l) + w(P (v, l)) − w((v, p(v)) × (n − |Tv| − 1)
for any path P (v, l) ⊂ Tv . While performing bypass(v),
where v has a unique child u in Ti, we set f(p(v)) =
min{f(p(v)), f(v)−w((v, p(v))× (n− |Tv| − 1)}+ g(v)
andw((u, p(v)) = w((v, p(v))+w((u, v)), where (u, p(v))
is a new edge created by bypass operation. We also mod-
ify the compensation factor g(v) by setting g(v) = g(v) +
w(v, p(v))×(|Tv|−|Tu|). Similar to the proof of Lemma 4,
it is easy to verify that f(r) = min{δ(P (r, l))+w(P (r, l))}
while tree contraction is done. o

Corollary 2 A rooted trunk in a rooted tree Tr can be
found in O(log n) time using O(n/ log n) processors on an
EREW PRAM.

Proof: The leaf l0 that achieves the minimum value in The-
orem 3 can be obtained easily with O(1) additional book-
keeping process per vertex while performing prune and
bypass operations. o

Corollary 3 A trunk in a tree T can be found in O(log n)
time using O(n/ log n) processors on an EREW PRAM.

Proof: The orientation of tree T and finding a rooted trunk
in a rooted tree take O(log n) time using O(n/ log n) pro-
cessors on an EREW PRAM. A trunk can be found by per-
forming twice the process of a tree orientation followed by
finding a rooted trunk in the rooted tree. Therefore, the
corollary is true. o

6. An Application and Concluding remarks

The concept of trunk in tree networks has applications
on efficient multicast for wireless ad hoc networks. Overlay
multicast protocols [3, 4, 5] are used for efficient multicast
at application layer. It constructs a virtual mesh spanning all
member nodes of a multicast group and employs standard
unicast routing to fulfill multicast functionality. A spanning
tree T on the virtual mesh, an weighted tree in which the
weight of an edge (u, v) is the number of hops from u to v
in the original network, is commonly used by overlay mul-
ticast protocols for efficient multicast.

However, maintaining the spanning tree for mobile ad
hoc networks is expensive. A path in the tree can be
used to reduced the cost for maintenance due to its sim-
ple, linear structure. The total cost for multicast using a
path P contains two parts: the cost for broadcasting in-
side P and the cost for unicasting from the nodes inside
P to the nodes outside. Formally speaking, the cost of the
first part is

∑

e∈P w(e) and the cost of the second part is
∑

v∈V (T) d(v, P). Therefore, the problem of finding a path
with minimum communication cost is exactly the problem
of finding a trunk in T . Figure 12 shows a trunk of a span-
ning tree on a virtual mesh of size 50 in an ad hoc wire-
less network of 100 nodes. The solid cycles in the figure
represent the group members and the trunk is marked with
thickest lines.

We had presented a new optimization problem, its so-
lutions and efficient algorithms on theoretical models. We
also showed a possible application on communication in ad
hoc wireless networks. It is interesting to develop efficient
algorithms for constructing a trunk in tree networks on the
models that run asynchronously and use local information
only.

0

1

2

3

4

5
6

7

8

9

a

b

c

d

e

f

10

11

12

13

14

15

16

17

18

19

1a
1b

1c

1d

1e

1f

20

21

22

23

24

25

26

27
28

29

2a

2b

2c

2d

2e

2f

30

31

32

33

34

35

36

37

38

39

3a

3b

3c

3d

3e

3f

40

41

42

43

44

45

4647

48 49

4a

4b

4c

4d

4e

4f
50

51

52

53

54

55

56

57

58

59

5a

5b

5c

5d

5e

5f

60

61

62

63

Figure 12. A trunk of a spanning tree on virtual mesh

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and
T. Przytycka. A simple parallel tree contraction al-
gorithm. Journal of Algorithms, 10(2):287–302, Jun.
1989.

[2] R. Cole and U. Vishkin. Approximate parallel schedul-
ing. part i: The basic technique with applications to op-
timal parallel list ranking in logarithmic time. SIAM
Journal of Computing, 17(1):128–142, 1988.

[3] C. Cordeiro, H. Gossain, and D. Agrawal. Multicast
over wireless mobile ad hoc networks: Present and fu-
ture directions. IEEE Network, 17(1):52–59, Jan. 2003.

[4] C. Gui and P. Mohapatra. Efficient overlay multicast
for mobile ad hoc networks. In Proceedings of IEEE
Wireless Communications and Networking Conference
(WCNC2003), Mar. 2003.

[5] J. Janotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole. Overcast: Reliable multicasting with an
overlay network. In Proceedings of 4th Symp. Oper-
ating Systems Design and Implementation, pages 197–
212, Oct. 2000.

[6] C. A. Morgan and P. J. Slater. A linear algorithm for
a core of a tree. Journal of Algorithms, 1(3):247–258,
1980.

[7] S. Peng and W. Lo. A simple optimal parallel algorithm
for a core of a tree. Journal of Parallel amd Distributed
Computing, 20(3):388–392, 1994.

[8] S. Peng and W. Lo. Efficient algorithms for finding
a core with a specific length. Journal of Algorithms,
20(3):445–458, 1996.

[9] S. Peng, A. B. Stephens, and Y. Yesha. Algorithms for
a core and k-tree core of a tree. Journal of Algorithms,
15(1):143–159, Jul. 1993.

